
While the Basic Stamp described in Chapter 31 is a favorite among robot enthusiasts, it
is not the only game in town. Hardware designers who know how to program their own
microcontrollers can create a customized robot brain using state-of-the-art devices such as
the PIC16CXXX family or the Atmel AVR family of eight-bit RISC-based controllers. The
reality, however, is that the average robot hobbyist lacks the programming skill and devel-
opment time to invest in custom microcontroller design.

Recognizing the large market for PIC alternatives, a number of companies have come
out with Basic Stamp work-alikes. Some are pin-for-pin equivalents, and many cost less
than the Stamp or offer incremental improvements. And a few have attempted to break the
Basic Stamp mold completely by offering new and unique forms of programmable micro-
controllers.

One fresh face in the crowd is the OOPic (pronounced “OO-pick”). The OOPic uses
object-oriented programming rather than the “procedural” PBasic programming found in the
Basic Stamp. The OOPic—which is an acronym for Object-Oriented Programmable
Integrated Circuit—is said to be the first programmable microcontroller that uses an object-
oriented language. The language used by the OOPic is modeled after Microsoft’s popular
Visual Basic. And, no, you don’t need Visual Basic on your computer to use the OOPic; the
OOPic programming environment is completely stand-alone and available at no cost.

The OOPic, shown in Fig. 33.1, has built-in support for 31 input/output (I/O) lines. With
few exceptions, any of the lines can serve as any kind of hardware interface. What enables
them to do this is what the OOPic documentation calls “hardware objects,” digital I/O lines

33
USING THE OOPIC

MICROCONTROLLER

517

From Robot Builder’s Bonanza, 2nd Edition. See www.robotoid.com for more. © 2001

that can be addressed individually or by nibble (4 bits), by byte (8 bits), or by word (16
bits). The OOPic also supports predefined objects that serve as analog-to-digital conver-
sion inputs, serial inputs/outputs, pulse width modulation outputs, timers-counters, radio-
controlled (R/C) servo controllers, and 4x4-matrix keypad inputs. The device can even be
networked with other OOPics as well as with other components that support the Philips
I2C network interface.

The OOPic comes with a 4K EEPROM for storing programs, but memory can be
expanded to 32K, which will hold some 32,000 instructions. The EEPROM is “hot swap-
pable,” meaning that you can change EEPRPOM chips even while the OOPic is on and
running. When a new EEPROM is inserted into the socket, the program stored in it is
immediately started.

Additional connectors are provided on the OOPic for add-ins such as floating-
point math; precision data acquisition; a combination DTMF, modem, musical-tone
generator; a digital thermometer; and even a voice synthesizer (currently under
development). The OOPic’s hardware interface is an open system. The I2C interface
specification, published by Philips, allows any IC that uses the I2C interface to
“talk” to the OOPic.

While the hardware capabilities of the OOPic are attractive, its main benefit is what it
offers robot hackers: Much of the core functionality required for robot control is already
embedded in the chip. This feature will save you time writing and testing your robot con-

518 USING THE OOPIC MICROCONTROLLER

FIGURE 33.1 The OOPic supports 31 I/O lines and runs on 6–12 vdc power.
Connectors are provided for the I/O lines, programming cable,
memory sockets, and Philips I2C network.

trol programs. Instead of needing several dozen lines of code to set up and operate an RC
servo, you need only about four lines when programming the OOPic.

A second important benefit of the OOPic is that its various hardware objects are mul-
titasking, which means they run independently and concurrently of one another. For
example, you might command a servo in your robot to go to a particular location. Just
give the command in a single statement; your program is then free to activate other func-
tions of your robot—such as move another servo, start the main drive motors, and so
forth. Once started by your program, all of these functions are carried out autonomously
by the objects embedded within the OOPic. This simplifies the task of programming and
makes the OOPic capable of coordinating many hardware connections at the same time.

Fig. 33.2 shows a fire-fighting robot that uses several networked OOPics as its main
processor. This two-wheeled robot hunts down small fires and literally snuffs them out
with a high-powered propeller fan.

OBJECTS AND THE OOPIC 519

FIGURE 33.2 This fire-fighting robot, built by OOPic developer
Scott Savage, uses three OOPics wired together in a
network to control the machine’s central command,
sensors, and locomotion.

Objects and the OOPic
Mention the term object-oriented programming to most folks and they freeze in terror. Okay,
maybe that’s an exaggeration, but object-oriented programming seems like a black art to many,
full of confusing words and complicated coding. Fortunately, the OOPic avoids the typical pit-
falls of object-oriented programming. The OOPic chip supports an easy-to-use programming
language modeled directly after Microsoft Visual Basic, so if you already know VB, you’ll be
right at home with the OOPic. Future versions of the OOPic software development platform
will support C and Java syntax for those programmers who prefer these languages.

The OOPic VB-like language offers some 41 programming commands. That’s not many
commands actually, but it’s important to remember that the OOPic doesn’t derive its flex-
ibility from the Basic commands. Rather, the bulk of the chip’s functionality comes from
its built-in 31 objects. Each of these objects has multiple properties, methods, and events.
You manipulate the OOPic’s hardware objects by working with these properties, methods,
and events. The Basic commands are used for program flow.

Here’s a sample OOPic program written in the chip’s Basic language. I’ll review what
each line does after the code sample. This short program flashes a red LED on and off once
a second. Fig. 33.3 shows how to connect the LED and a current-limiting resistor to I/O
line 1 (pin 7 on the I/O connector) of the OOPic.

Dim RedLED As New oDio1

Sub Main()
RedLED.IOLine = 1
RedLED.Direction = cvOutput
Do

RedLED.Value = OOPic.Hz1
Loop
End Sub

These lines comprise a complete, working program. Here’s the program broken down:

Dim RedLED As New oDio1

The Dim statement creates a new instance of a particular kind of digital I/O object. This
I/O object, referred to as oDio1, has already been defined within the OOPic. All of the
behaviors of this object have been preprogrammed; your job is to select the behavior you
want and activate the object. Note that all of the OOPic’s object names start with a lower-
case letter O, such as oDio1, oServo,and oPWM.

Sub Main()
...

End Sub

The main body of every OOPic program resides within a subroutine called Main. OOPic
Basic permits you to add additional subroutines to your program, but every program must
have a Main subroutine. As with Microsoft’s Visual Basic, you refer to subroutines by name.

RedLED.IOLine = 1
RedLED.Direction = cvOutput

520 USING THE OOPIC MICROCONTROLLER

These two lines set up the I/O line connected to the RedLED object. In this case, we’ve
defined that the RedLED object is connected to I/O line 1 and that this object will serve as
an output (cvOutput is a predefined constant; you don’t need to define its value ahead of
time). All digital I/O lines can be defined as either input or output. The OOPic does not
reserve certain lines as outputs and others as inputs.

Do
RedLED.Value = OOPic.Hz1

Loop

The statement RedLED.Value � OOPic.Hz1 makes the LED flash once a second. The Do
loop is used to keep the program running, so the LED continues to flash. Note the
OOPic.Hz1 value that is assigned to the RedLED object: OOPic is a built-in “system
object” that is always available to your programs. One property of the OOPic object is Hz1,
which is a one-bit value that can be used, for example, to change the state of an I/O line
(goes from HIGH to LOW) once a second. The following table describes other properties
of the OOPic system object you may find useful.

OBJECTS AND THE OOPIC 521

330W

Any I/O line
on OOPic

FIGURE 33.3 The OOPic can source or sink up to
25 mA per I/O line. This sample circuit
drives an LED directly. Transistors or
bridges are needed when driving a
large relay or a motor.

OOPIC
PROPERTY WHAT IT DOES

ExtVRef Specifies the source of the voltage reference
for the analog-to|digital module.

Hz1 1-bit value that cycles every 1 Hz.

Hz60 1-bit value that cycles every 60 Hz.

Node Used when two or more OOPics “talk” to each other via the I2C network.
A Node value of more than 0 is the OOPic’s I2C network address.

Operate Specifies the power mode of the OOPic.

Pause Specifies if the program flow is suspended.

PullUp Specifies the state of the internal pull-up resisters on I/O lines 8 – 15.

Reset Resets the OOPic.

StartStat Indicates the cause of the last OOPic reset.

Using and Programming the OOPic
Other than a 6–12 VDC power source, you don’t need any other components to begin using the
OOPic. For adequate current handling when operating under battery power, I suggest that you
use a set of eight alkaline AA batteries in a suitable holder. The OOPic Starter Package comes
with a nine-volt transistor battery clip; you can use this clip with Radio Shack’s part number
270-387 eight-cell AA battery holder. The holder has connectors for the transistor battery clip.

You can develop programs for the OOPic using a proprietary but free development soft-
ware (see Fig. 33.4). The development software works under Windows 9x and NT, and it
self-installs all the necessary system files.

To program the OOPic you connect a cable between the parallel port of your PC and the
programming port of the OOPic. The programming cable is provided as part of the OOPic
Starter Package or you can make your own by following the instructions provided on the
OOPic home page (www.oopic.com/). Once you’ve written a program in the development
software, it is compiled and downloaded through the programming cable. The OOPic is
then ready to begin executing your program. Because the OOPic stores the downloaded
program in nonvolatile EEPROM, the program will remain in the OOPic’s memory until
you erase it and replace it with another.

OOPic Objects That Are Ideal for Use
in Robotics
Though the OOPic is meant as a general-purpose microcontroller, many of its objects are
ideally suited for use with robotics. Of the built-in objects of the OOPic, the oA2D, oDiox,
oKeypad, oPWM, oSerial, and oServo objects are probably the most useful for robotics
work. In the following descriptions, the term property refers to the behavior of an object,
such as reading or setting the current value of an I/O line.

ANALOG-TO-DIGITAL CONVERSION

The oA2D object converts a voltage that is present on an I/O line and compares it to a ref-
erence voltage. It then generates a digital value that represents the percentage of the volt-

522 USING THE OOPIC MICROCONTROLLER

FIGURE 33.4 Programs are written for the
OOPic using a Windows-
based software develop-
ment platform. You open,
save, debug, and compile
your OOPic programs using
pull-down menu commands.

age in relation to the reference voltage. The Operate property of the oA2D object initi-
ates the conversion, and the Value property is updated with the result of the conversion.
When the Operate value of the oA2D object is 1, the analog-to-digital conversion, along
with the Value update, occurs repeatedly. Conversion ceases when the Operate property
is changed to 0.

There are four physical analog-to-digital circuits implemented within the OOPic. They
are available on I/O lines 1 through 4.

DIGITAL I/O

Several digital I/O objects are provided in 1-bit, 4-bit, 8-bit, or 16-bit blocks. In the case
of the 1-bit I/O object (named oDio1), the Value property of the object represents the elec-
trical state of a single I/O line. In the case of the remaining digital I/O objects, the Value
property presents the binary value of all the lines of the group (4, 8, or 16, depending on
the object used).

There are 31 physical 1-bit I/O lines implemented within the OOPic. The OOPic offers
six physical 4-bit I/O groups, three 8-bit groups, and one 16-bit group.

R/C SERVO CONTROL

The oServo object outputs a servo control pulse on any IO line. The servo control pulse is
tailored to control a standard radio-controlled (R/C) servo and is capable of generating a
logical high-going pulse from 0 to 3 ms in duration in 1/36 ms increments.

A typical servo requires a five-volt pulse in the range of 1–2 ms in duration. This allows
for a rotational range of 180°. The duration of the control pulse is determined by setting
the Value, Center, and InvertOut properties of the oServer object. The Value property con-
trols the position of the servo while the Center property adjusts the control pulse time to
compensate for mechanical alignment. An InvertOut property is used to reverse the direc-
tion that the servo turns in response to the Value and Center properties. We will say more
about servo control in a bit.

KEYPAD INPUT

The oKeypad object splits two sets of four I/O lines in order to read a standard 4x4-key-
pad matrix. The four row lines are individually and sequentially set low (0 volts) while the
four column lines are used to read which switch within that row is pressed.

If any switch is pressed, the Value property of the oKeypad object is updated with the
value of the switch. A Received property is used to indicate that at least one button of the
keypad is pressed. When all the keys are released, the Received property is cleared to 0.

PULSE WIDTH MODULATION

The oPWM object provides a convenient pulse width modulated (PWM) output that is suit-
able for driving motors (through an appropriate external transistor output stage, of course).
The oPWM object lets you specify the I/O line to use—up to two at a time for PWM out-
put, the cycle frequency, and the pulse width.

OOPIC OBJECTS THAT ARE IDEAL FOR USE IN ROBOTICS 523

ASYNCHRONOUS SERIAL PORT

The oSerial object transmits and receives data at a baud rate specified by the Baud prop-
erty. The baud rate can be either 1200, 2400, or 9600 baud. The oSerial object is used to
communicate with other serial devices, such as a PC or a serial LCD display.

Using the OOPic to Control a Servo
Motor
Though R/C servo motors are intended to be used in model airplanes, boats, and cars, they
are equally useful for robotics applications. Servo motors are inexpensive—basic models
cost under $15 each—and they combine in one handy package a DC motor, a gearbox, and
control electronics. The typical servo motor is designed to rotate 180° (or slightly more)
in order to control the steering wheel on a model car or the flight control surfaces on an
R/C airplane. For robotics, a servo can be connected to an armature to operate a gripper,
to an arm or leg, and to just about anything else you can imagine.

SERVO MOTORS: IN REVIEW

Let’s review the way servos operate so we can better understand how you can interface
them to the OOPic. An R/C servo consists of a reversible DC motor. The high-speed out-
put of the motor is geared down by a series of cascading reduction gears that can be made
out of plastic, nylon, or metal (usually brass, but sometimes aluminum). The output shaft
of the servo is connected to a potentiometer, which serves as the closed-loop feedback
mechanism. A control circuit in the servo uses the potentiometer to accurately position the
output shaft.

Servos use a single pulse width modulated (PWM) input signal that provides all the
information needed to control the positioning of the output shaft. The pulse width varies
from a nominal 1.25 milliseconds (ms) to roughly 1.75 ms, with 1.5 milliseconds repre-
senting the “center” (or neutral) position of the servo output shaft (note that servo specs
vary; these are typical). Lengthening the pulse width causes the servo to rotate in one
direction; shortening the pulse width causes the servo to rotate in the other direction. The
position of the potentiometer acts to “null out” the input pulses, so when the output shaft
reaches the correct location the motor stops.

R/C servos are engineered to accept a standard TTL-level signal, which typically comes
from a receiver mounted inside a model car or plane. The OOPic can interface directly to
an R/C servo and requires no external components such as power transistors.

CONTROLLING SERVOS VIA OOPIC CODE

You can theoretically control up to 31 servos with one OOPic—one servo per IO line.
However, the more practical maximum is no more than 8 to 10 servos. The reason: Servos
require a constant stream of pulses, or else they cannot accurately hold their position. The
ideal pulse stream is at 30 to 60 Hz, which means that to operate properly each servo

524 USING THE OOPIC MICROCONTROLLER

connected to the OOPic must be “updated” 30 to 60 times per second. The OOPic is engi-
neered to provide pulses at 30-Hz intervals; with more than about eight servos the refresh
rate is reduced to 15 Hz. While most servos will still function with this slow refresh rate,
a kind of “throbbing” can occur if the motor is under load.

Some robotic projects call for controlling a half-dozen or more servos, such as the six-
legged Hexapod II from Lynxmotion (which requires 12 servos working in tandem).
However, the typical experimental robot uses only two or four servos. The OOPic is ideal-
ly suited for this task, and programming is easy. To operate a servo, you need only provide
a few lines of setup code, then indicate the position of the servo using a positioning value
from 0 to 63. This value corresponds to the 0–180° movement of the servo output shaft.

With 64 steps the OOPic is able to position a servo with 2.8° of accuracy. This assumes
a maximum rotation of 180°, which not all servos are capable of. Note that if you need
greater resolution than this you can make use of the OOPic’s built-in pulse width modula-
tion object, which can be programmed to provide your servos with far greater positional
accuracy. However, for most applications, the OOPic’s servo object provides adequate res-
olution and is easier to use.

Listing 33.1 shows a program written in the OOPic’s native Basic syntax and demon-
strates how to control an R/C servo using the oServo object. Fig. 33.5 shows how to con-
nect the servo to the OOPic.

LISTING 33.1.
' OOPic servo demonstrator
' Uses a standard R/C servo

' This program cycles a servo, connected to IOLine 31,
' for full rotation (0 to 180 degrees)

' Dimension needed objects
Dim S1 As New oServo

USING THE OOPIC TO CONTROL A SERVO MOTOR 525

+6 vdc

Gnd

OOPicAny I/O
pin

Servo

Connected
grounds

+V for OOPic

Ground for
+6 vdc servo

power Ground for
OOPic power

330W
(optional)

FIGURE 33.5 Follow this basic wiring diagram to connect
a standard R/C servo to the OOPic. Most
servos use consistent color coding for their
wiring: black for ground, red for V , and
yellow or white for input (signal).

Dim x As New oByte
Dim i As New oNibble
'————————————————————————-
'First routine called when power is turned on
Sub Main()
Call Setup ' set up servo properties
For i = 1 to 5 ' repeat motions five times

S1 = 0 ' set servo to 0 degrees, and wait a while
Call longdelay
S1 = 63 ' set servo to 180 degrees, and wait a while
Call longdelay

Next i
End Sub
'————————————————————————-
' Delay loop routine
Sub longdelay()
For x = 1 To 200:Next x
End Sub
'————————————————————————-
' Setup routine
Sub Setup()
S1.Ioline = 31 ' Set servo to I/O line 31 (pin 26)
S1.Center = 31 ' Set center to 31 (experiment for best

results)
S1.Operate = cvTrue ' Turn servo on
End Sub

POWERING THE SERVOS

Note that separate battery power supplies were used for the OOPic and the servo. Most
hobby R/C servos are designed to be operated with 4.5 to 7.2 vdc. Connecting both
OOPic and servo to a single 6-volt supply can cause the OOPic to reset itself. Most ser-
vos draw considerable current when turned on, and this current can cause the supply
voltage of a 6-volt battery pack to sag below the 4.5-volt level required by the OOPic.
When the voltage drops below 4.5 volts, the OOPic’s built-in brownout circuit kicks in,
which resets the processor. This repeats continuously, and the net effect is a nonfunc-
tioning circuit.

One alternative is to power the whole shebang from a single 9- or 12-volt supply, but
with higher voltage comes overpowered servos. Not all servos are built to handle the extra
speed and heat caused by the higher voltage, and an early death for your servos could
result. Therefore, it’s best to use two different batteries. The OOPic is fine operating from
a single 9-volt transistor battery. The servo runs from a set of four AA batteries.

HOW THE OOPIC SERVO CODE WORKS

The first three lines in Listing 33.1 “dimension” (create in memory) the objects used in the
OOPic program. S1 is the servo object; x and I are simple data objects that hold eight and
four bits, respectively. The program itself begins with the Main subroutine, which is auto-
matically run when the OOPic is first turned on or when it is reset. The first order of busi-
ness is to call the Setup subroutine, located at the end of the program. In Setup, the pro-
gram establishes that IO line 31 (pin 26 of the OOPic chip) is connected to the control
input of the servo.

The servo is then centered using a value of 31 (half of 64, considering 0 as the first valid
digit). You need to experiment to find the mechanical center of the servo you are using.

526 USING THE OOPIC MICROCONTROLLER

OPERATING MODIFIED SERVOS 527

Each servo, particularly those that have different sizes and come from different manufac-
turers, can have a different mechanical center. Therefore, adjust this value up or down
accordingly. Finally, the servo object is activated using the statement

S1.Operate = cvTrue

Notice the use of properties when working with the OOPic’s objects. Properties are
defined by specifying the name of the object, such as S1 for servo 1, a period (known as the
member operator in programming parlance), then the property name. So, S1.Ioline sets (or
reads) the IO line property for the S1 object. Similarly, S1.Center sets the center property,
and S1.Operate turns the S1 object on or off. Most OOPic properties are read and write,
meaning that you can both set and read their value. A few are read-only or write-only.

Once you have set the servo up, you can manipulate it using the S1.Value property. In
the demonstration program, the Value property is inferred because it is the so-called
default property for servo objects. Therefore, it is only necessary to specify the name of
the object and the value you want for it:

S1 = 0

This sets the servo all the way in one direction, and the following expression,

S1 = 63

sets the servo all the way in the other direction. Because the Value property is the default
for the oServo object, the statement S1 � 63 is the same as writing S1.Value � 63.

Exercise care when playing around with servos. Not all servos can travel a full 90° from
center, especially if you have not properly set the mechanical center using the
S1.Center property. For initial testing, use values slightly higher than 0 and slightly lower
than 63 to represent the minimum and maximum servo movements, respectively.
Otherwise, the OOPic may command the servo to move past an internal stop position,
which can cause the gears to slip and grind. Left in this state the servo can be perma-
nently damaged.

Operating Modified Servos
As designed, R/C servos are meant to travel in limited rotation, up to 90° to either side of some
center point. But by modifying the internal construction of the servo, it’s possible to make it
turn freely in both directions and operate like a regular-geared DC motor. This modification
is handy when you want to use servo motors for powering your robot across the floor.

The steps for modifying servos vary, but the general process is about the same:

1. Remove the case of the servo to expose the gear train, motor, and potentiometer. This
is accomplished by removing the four screws on the back of the servo case and sepa-
rating the top and bottom.

2. File or cut off the nub on the output gear that prevents full rotation. This typically
requires removing one or more gears, so you should be careful not to misplace any
parts. If necessary, make a drawing of the gear layout so you can replace things in their
proper location!

3. Remove the potentiometer, and replace it with two 2.7K-ohm 1 percent (precision)
resistors, wired as detailed in Chapter 20. This fools the servo into thinking it’s always
in the “center” position. Or relocate the potentiometer to the outside of the servo case,
so you can make fine-tune adjustments of the center position. If needed, you can attach
a new 5K- or 10K-ohm potentiometer to the circuit board outside the servo.

4. Reassemble the case.

See Chapter 20, “Working with Servo Motors,” for a step-by-step tutorial on modifying
commonly available servos for continuous rotation.

OOPIC CODE FOR MODIFIED SERVOS

Once modified, you can connect the servo to the OOPic just as you would an unmodified
servo (see Fig. 33.5). Listing 33.2 shows how to use the OOPic with two modified servos
acting as the drive motors for a two-wheeled robot. You can easily construct a demonstra-
tor robot using LEGO parts, like the prototype shown in Fig. 33.6. I cemented two light-

528 USING THE OOPIC MICROCONTROLLER

FIGURE 33.6 You can construct a demonstrator for the OOPic two-wheel robot
using LEGO bricks. The servos are glued to small LEGO parts to
aid in mounting.

weight R/C airplane wheels to control horns (these come with the servos). I also cement-
ed a 2x8 flat LEGO plate to the side of each servo to make it easier to snap the motors to
the LEGO-made frame of the robot.

LISTING 33.2.
' OOPic two-motor (servo) robot demonstrator
' Requires the use of modified R/C servos (see text)

' This program cycles the robot through various movements,
' including forward, backward, right spin, left spin,
' and turns.

' Dimension objects
Dim S1 As New oServo
Dim S2 As New oServo
Dim CenterPos as New oByte
Dim Button As New oDio1
Dim x as New oByte
Dim y as New oWord

'————————————————————————-
Sub Main()
CenterPos = 31 ' Set centering of servos
Call Setup
Do

If Button = cvPressed Then
' Special program to calibrate servos
S1 = CenterPos
S2 = CenterPos

Else
' Main program (IO line is held low)
Call GoForward
y = 200 ' Same as LongDelay
Call Delay ' Alternative to LongDelay

Call HardRight
Call LongDelay

Call HardLeft
Call LongDelay

Call SoftRightForward
Call ShortDelay

Call SoftLeftForward
Call ShortDelay

Call GoReverse
Call LongDelay

End If
Loop
End Sub

'————————————————————————-
' Set up IO lines and servos
Sub Setup()
Button.Ioline = 7 ' Set IO Line 7 for function input
Button.Direction = cvInput ' Make IO Line 7 input
S1.Ioline = 30 ' Servo 1 on IO line 30

OPERATING MODIFIED SERVOS 529

S1.Center = CenterPos ' Set center of Servo 1
S1.Operate = cvTrue ' Turn on Servo 1
S2.Ioline = 31 ' Servo 2 on IO line 31
S2.Center = CenterPos ' Set center of Servo 2
S2.Operate = cvTrue ' Turn on Servo 2
S2.InvertOut = cvTrue ' Reverse direction of Servo 2
End Sub

'————————————————————————-
' Short delay routine
Sub ShortDelay()

For x = 1 To 80:Next x
End Sub

'————————————————————————-
' Long delay routine
Sub LongDelay()

For x = 1 To 200:Next x
End Sub

'————————————————————————-
' Selectable delay routine
Sub Delay()

For x = 1 To y:Next x
End Sub

'————————————————————————-
' Motion routines (forward, back, etc.)
' "Hard" turns spin robot in place
' "Soft" turns turn robot right or left in forward
' (or backward) motion
'————————————————————————-

Sub GoForward()
S1 = 0
S2 = 0
End Sub

Sub GoReverse()
S1 = 63
S2 = 63
End Sub

Sub HardRight()
S1 = 0
S2 = 63
End Sub

Sub HardLeft()
S1 = 63
S2 = 0
End Sub

Sub SoftRightBack()
S1 = CenterPos
S2 = 63
End Sub

Sub SoftRightForward()
S1 = 0
S2 = CenterPos
End Sub

530 USING THE OOPIC MICROCONTROLLER

Sub SoftLeftBack()
S1 = 63
S2 = CenterPos
End Sub

Sub SoftLeftForward()
S1 = CenterPos
S2 = 0
End Sub

We attached batteries and OOPic to the top of the robot using double-sided tape.
Power to the OOPic is provided by a 9-volt battery; power to both servos is pro-
vided by a 6-volt pack of AAs. Note that I used a wire-wrap board as a terminal
bus, and standard .100”-center connectors instead of hard-soldering any wiring to
the various components. This makes it easier to test the robot and possibly add to
it at a later date.

REVIEWING THE PROGRAM CODE

The program in Listing 33.2 is a modified version of the program in Listing 33.1. Its main
difference, other than employing two oServo objects instead of one, is that the “center”
position is used to turn the motor off. Values greater than this center position cause the ser-
vos to rotate in one direction; values less than the center position cause the servos to rotate
in the opposite direction. The servos are made to turn one direction when their Value prop-
erty is 0 and the other direction when their Value property is 63.

Note that in Listing 33.2 the “normal” direction of travel for servo 2 (S2) is reversed
from S1, with the following statement:

S2.InvertOut = cvTrue

This is handy because in the two-wheeled robot the servos are mounted on opposite
sides, and therefore one motor must operate in mirror image to the other. That is, one must
turn clockwise while the other turns counterclockwise to move the robot forward or back-
ward. Without the InvertOut property, you’d have to set the Value property of one servo to
0 and the other to 63 to maintain proper forward or backward motion.

Not shown in Listing 33.2 is a useful feature you may want to implement: values very
close to the center position (/- about five steps) will cause the servos to slow down by a
proportional amount. For example, if the center position is 31, then a value of 32 for S1 or
S2 may cause that servo to rotate clockwise very slowly. Higher values will modestly
increase the speed in the same direction of travel. Conversely, a value of 30 for the S1 or
S2 object may cause the servo to rotate counterclockwise very slowly. A value of 29 would
make the motor go a little faster, and so on.

Listing 33.2 takes the robot through a series of patterned moves, including forward and
backward movement, right and left spins, and turns. Delay routines allow you to specify
how long each movement is to last. Vary the delay up or down to experiment with differ-
ent motions. In the prototype for this book, the program in Listing 33.2 moves the robot
back and forth about two feet. The program repeats itself until you reset the OOPic or dis-
connect the power.

The modified servos use an externally accessible trimmer potentiometer. The trimmer pot,
which is attached to the case of the servo with a small piece of double-sided foam tape, serves

OPERATING MODIFIED SERVOS 531

to provide an accurate voltage divider by which the servos can be set to center, or neutral, posi-
tion. The trimmer pots are set by temporarily taking IO line 7 high. This causes the program in
Listing 33.2 to run an alternative routine in its Main loop, so you can set the Center property
of both servos to a value of 31. The pots are then adjusted so that the motors just stop—this
represents the center position. Using the potentiometer makes it much easier to calibrate the
servos so they can be used with the program. Once calibrated, you can tie IO line 7 low again.

Using the OOPic to Control Stepper
Motors
The OOPic is full of pleasant surprises, including the innate ability to control a standard
four-phase unipolar stepper motor. Unlike R/C servos, however, the OOPic is not able to
directly drive a stepper motor. For that you’ll need an interface with a current and voltage
rating for the stepper motor you are using. Chapter 19 provides additional information on
using stepper motors.

Listing 33.3 shows a simple stepper motor driving program that uses a feature unique
to the OOPic: virtual circuits. Instead of programming each of the four phases of a step-
per with on/off values in code, this program uses two processing objects, oConverter and
oCounter. Processing objects are used to construct virtual circuits, which are like real elec-
tronic circuits, only they are created solely using programming statements.

LISTING 33.3.
' OOPic stepper motor demonstrator
' Uses a standard four-phase unipolar stepper motor
' Operates motor in half-stepping mode

' Dimension objects
Dim Stepper as New oDio4 ' 4-bit IO for controlling stepper
Dim Driver as New oConverter
Dim Position as New oWord ' 32-bit value for current position
Dim Mover as New oCounter

'————————————————————————-
Sub Main()
Call Setup
' The rest of your code here

' To reverse motor, use Mover.Direction = cvNegative
' or Mover.Direction = cvPositive
' To stop-and-hold motor, use Mover.Operate = cvFalse
' To restart motor, use Mover.Operate = cvTrue
' To stop and de-energize motor, use Driver.Blank = 1
End Sub

'————————————————————————-
' Set up stepper motor
Sub Setup()
Stepper.IOGroup = 1 ' Set stepper to use IO group 1 (pins 8-11)
Stepper.Nibble = 0 ' Picks lower 4 lines from IO group
Stepper.Direction = cvOutput ' Make lines outputs
Driver.Output.Link(Stepper.Value) ' Set up virtual circuit

532 USING THE OOPIC MICROCONTROLLER

Driver.Input.Link(Position.Value)
Driver.Mode = cvPhase
Driver.Operate = cvTrue
Mover.ClockIn1.Link(OOPic.Hz60) ' Use OOPic 60 Hz object for stepping
Mover.Output.Link(Position.Value)
Mover.Operate = cvTrue ' Enable counter
End Sub

The stepper motor program in Listing 33.3 demonstrates one of the uses for the
oConverter numeric-conversion object. This program has the built-in “behavior” of being
able to construct the proper phasing to control the forward and backward rotation of a four-
phase unipolar stepper motor. The program also uses a counter object, which allows you to
define the number of steps you wish to apply to the motor. Keep in mind that the
oConverter object specifies an eight-phase cycle, which has the effect of moving the motor
in half-step increments (this serves to improve the accuracy and torque of the motor). So,
for example, if the motor is rated at 200 steps per revolution, it will require 400 pulses from
the OOPic to turn it a full 360° degrees.

Experiment with the OOPic and you’ll find it’s a capable performer in the field of
robotics. By using its objects judiciously, coupled with a liberal sprinkling of virtual cir-
cuits, you should be able to construct most any kind of robotic creature using a minimum
number of external components.

From Here
To learn more about… Read
Stepper motors Chapter 19, “Working with Stepper Motors”
How servo motors work Chapter 20, “Working with Servo Motors”
Different approaches for adding Chapter 28, “An Overview of Robot ‘Brains’”
brains to your robot
Connecting the OOPic microcontroller Chapter 29, “Interfacing with Computers and
to sensors and other electronics Microcontrollers”

FROM HERE 533

