
Microcontrollers are fast becoming a favorite method for endowing robots with smarts.
In fact, they’re a robot builder’s dream come true. Microcontrollers are single-chip com-
puters complete with their own input/output ports and even memory. The typical cost of a
microcontroller is from $5 to $15 and most can be programmed using the software on your
PC. Once programmed, the microcontroller is disconnected from the PC and operates on
its own. Microcontrollers are power misers too. Nearly all have simple power requirements
(usually just 3.3 or 5 volts) and require just a few milliamps for their own operation, even
when running at speeds of 5 or 10 megahertz.

Microcontrollers are available in two basic flavors: low-level programmable and embed-
ded-language programmable. As we noted in Chapter 28, these loosely defined terms
relate to the programming of the controller. Both kinds of microcontroller are fully pro-
grammable, but one contains a kind of built-in operating system that allows it to be pro-
grammed with a higher-level language, such as Basic.

Let’s talk about low-level microcontrollers first. You program these with assembly lan-
guage or C, using your PC as a host development system. Assembly language seems some-
what arcane to newcomers, but the language offers full control over the internal workings of
the microcontroller. Unfortunately, there’s no standard when it comes to assembly languages.

Popular alternatives to these low-level programmable microcontrollers are products that
have a built-in programming interface, such as the Basic Stamp from Parallax or the OOPic
from Savage Industries. These controllers support a high-level programming language—typ-
ically Basic—that is permanently embedded within the chip. Using your PC as a develop-

32
USING THE BASICX

MICROCONTROLLER

501

From Robot Builder’s Bonanza, 2nd Edition. See www.robotoid.com for more. © 2001

ment platform, you write software for the microcontroller using a custom program editor.
The software is then compiled to a series of tokens or bytecodes and then downloaded to the
microcontroller.

Joining the ranks of powerful embedded-language programmable microcontrollers is
the BasicX-24, by NetMedia, a company founded by the creator of the popular LANtastic
networking software (which sold some 10 million copies). The BasicX-24 is actually a
member of a family of microcontrollers from NetMedia that also includes the less expen-
sive (but network-capable) BasicX-01. However, all things considered, the BasicX-24 is
perhaps the most versatile, so this chapter will focus on it exclusively.

Inside the BasicX-24 Microcontroller
A selling point of the BasicX-24 (which we’ll refer to as the BX-24 from here on) is that
it is pin-for-pin compatible with Parallax’s Basic Stamp II. That is, the functions of all 24
pins of the BX-24 replicate the functions of the Basic Stamp II, including power and
ground connections. It’s important to note, however, that the BX-24 is not a Stamp “clone.”
The two microcontrollers don’t share the same programming languages, so programs writ-
ten for one will not work on the other. Additionally, the BX-24 has several additional fea-
tures not found in the Basic Stamp II, such as built-in analog-to-digital conversion and 32K
of EEPROM memory.

Fig. 32.1 shows the BX-24 “chip,” which (like the Basic Stamp) is actually several inte-
grated circuits on a small circuit board. The layout of the pins on the BX-24 is identical to
that of any standard-sized 24-pin IC, so it will plug into a regular 24-pin socket. Additional
plated-through holes are provided on either end of the BX-24 board, making it just slightly
longer than the Basic Stamp II. These holes provide connections to additional input/output
lines provided on the BX-24. I’ll get to those in a bit.

The BX-24 directly supports 16 input/output (I/O) lines, the same number as the Basic
Stamp II. For each I/O line, or pin, you can change the direction from an input or an out-
put. When an I/O line is an output, you can individually control the value of the pin, either
0 (logic LOW) or 1 (logic HIGH). When an I/O line is an input, you can read a digital or
analog value from a TTL-compatible device connected to the BX-24. Eight of the 16 I/O
lines can be used for analog connections. The BX-24 incorporates its own built-in 10-bit
analog-to-digital converter (ADC). Under software control, you can indicate which of the
8 input lines is to be read.

Three of the plated-through holes of the BX-24 serve as optional I/O and are program-
matically referred to as pins 25, 26, and 27. This makes a total of 19 input/output pins. The
remaining plated-through holes provide a way to connect to the chip’s serial peripheral
interface, or SPI, lines. I do not recommend that you connect to these lines unless you’re
familiar with SPI interfaces, especially since the BX-24’s EEPROM is controlled by these
same I/O lines.

A nice feature of the BX-24 is its two LEDs: one red and one green. The green LED is
normally used to indicate that the chip is powered on, but you can individually control both
LEDs from your own programs. You might use the LEDs as status indicators, for example.
The LEDs share two of the additional plated-through hole connectors on the BX-24.

502 USING THE BASICX MICROCONTROLLER

The BX-24 board comes with its own five-volt voltage regulator, which provides
enough operating current for all the components on the board, plus several LEDs or logic
ICs. If you plan on using the BX-24 to operate a robot, you’ll want to provide a separate
power supply of adequate current rating to the other components of the robot. You should
not rely on the BX-24’s on-board regulator for this task.

Pinout Diagram for the BX-24
Fig. 32.2 shows the pinout diagram of the BX-24 as well as the functions of its 24 pins. Of
main interest are the following:

Pin 24. This is the unregulated power input. Apply an unregulated DC voltage of 5.5 to
15 volts here. The onboard regulator will provide a stable 5 vdc input for the BX-24 cir-
cuitry.
Pin 23, 4. This is the ground. You can use either or both of these pins when connecting
to other circuitry.
Pin 21. This is for 5 vdc input. Instead of using pin 24 for power, you may directly
apply regulated 5 vdc to this pin. Or, if power is applied through pin 24, pin 21 serves
as a convenient source of regulated 5 vdc power. The voltage regulator on the BX-24

PINOUT DIAGRAM FOR THE BX-24 503

FIGURE 32.1 The BasicX-24 consists of surface-mount integrated circuits on a
small circuit board. The BX-24 circuit board has the same dimen-
sions as a standard 24-pin IC.

can supply approximately 70 mA of total additional current, either through this pin or
through the I/O pins described next.
Pins 5 through 11. This is I/O Port C, one of two eight-bit ports on the BX-24. Pin 12
serves “double duty” as an input capture pin, which can be used for very accurate tim-
ing. Pin 11 serves double duty as an external interrupt. With the appropriate program-
ming, the BX-24 can be commanded to automatically run certain code when this line
goes HIGH.
Pins 13 through 20. This is Port D, the second of two eight-bit ports on the BX-24. All
of the pins in this port serve double duty as analog-to-digital conversion inputs. That is,
in addition to on/off (1 and 0) digital inputs and outputs, these pins can accept analog
inputs. The range of the analog inputs spans 0 to 5 volts.
Pins 25 and 26 are additional I/O lines that are available if you solder connections
directly to the BX-24 chip (as such as they are not strictly “pins,” but we’ll treat them
as if they were). Access to pins 25 and 26 are provided via plated-through holes, which
can be connected to wires or pin headers. These two pins share I/O with the on-board
red and green LEDs.
Pin 27 serves as the output capture I/O line. As with pins 25 and pin 26, this pin is avail-
able if you solder directly to the BX-24 chip.

Programming the BX-24
To program the BX-24 you need to purchase the BasicX-24 developer’s kit, which contains
one BX-24, a programming cable, a power supply, a “carrier board” (see Fig. 32.3), and
programming software on CD-ROM. You plug the BX-24 into the carrier board, which has
a 24-pin socket and empty solder pads that you can use to add your own circuitry. The pro-
gramming cable connects between the carrier board and a serial port on your PC. The
power supply is the “wall wart” variety and provides about 12–16 vdc.

The BX-24 uses a proprietary programming environment, consisting of an editor and a
download console, which also serves double duty as a terminal for data sent from the

504 USING THE BASICX MICROCONTROLLER

1

12 13

24 Power In

Gnd

Reset

+5V

P15

P14

P13

P12

P11

P10

P9

P8P7

P6

P5

P4

P3

P2

P1

P0

Gnd

Atn

RX

TX

FIGURE 32.2 Pinout diagram of the BasicX-24
chip. Note that several of the
pins serve double duty (as
explained in the text).

microcontroller. The program editor, shown in Fig. 32.4, supports the BasicX language,
which is a subset of Microsoft Visual Basic. Don’t expect all Visual Basic commands to be
available in BasicX, however. BasicX supports the same general syntax as Visual Basic,
and many of the same data types (bytes, integers, strings, and so forth).

If you’re familiar with Visual Basic then you should feel right at home with BasicX. The
BasicX language supports the usual control structures, such as If…End If, While…Wend,
For—Next, and Select…Case. Your BasicX programs can be subroutines, and you can call
those subroutines from anywhere in the program.

Depending on how you’ve used Visual Basic, however, you may discover that BasicX
is far less forgiving of certain programming habits. BasicX uses a “strict” data-typing syn-
tax that requires you to use the Dim statement—or one of its variations, such as Const—
to define each variable before it is used. With the Dim statement you must also indicate the
variable type, such as Byte or String.

Modern versions of Visual Basic support a special type of variable called the variant.
Variants can hold most any kind of data, which allows you to freely “mix and match” data
types, such as adding an integer to a string (i.e., adding the number one to the name

PROGRAMMING THE BX-24 505

FIGURE 32.3 The easiest way to experiment with the BX-24 is to use the carrier
board that is included as part of the BX-24 developer’s kit. The
carrier board includes a DB-9 connector for hooking the system
up to a PC for programming.

“Smith” to get “Smith1”). Apart from the danger that you will introduce bugs by mixing
data types, variants consume a lot of memory. They also tend to slow down execution
speed, since it must determine the type of variable each time it is accessed.

Visual Basic provides the variant feature because memory is abundant on PC systems,
and—at least with the latest machines—processor speed is fairly fast. Conversely, memo-
ry in a microcontroller must be carefully rationed. The BX-24 supports 400 bytes (that’s
bytes, not megabytes or even kilobytes) of RAM memory to store data. For a microcon-
troller, that’s actually a copious amount of memory! (By the way, if you’re wondering, your
programs are stored separately in a 32K block of EEPROM, which is enough for some
8000 instructions. You’ll be hard-pressed to create programs that large for your robot.)

When using BasicX, you must be constantly aware of the data type being stored in each
variable. If you need to manipulate two variables that contain different types of data, you
must remember to use the various data conversion commands that BasicX supports. This
is perhaps one of the most frustrating aspects of BasicX programming for newcomers.

A particularly nice feature of the BasicX editor is that it allows you to build “projects”
consisting of multiple files. This allows you, for instance, to build a library of commonly
used programming functions that you may regularly use in your robotics work. When
building a new program for the BX-24, you create a new project and then include any con-
stituent files. This saves you from having to manually cut and paste commonly used code
to make one big program file.

Advanced programmers will appreciate the ability to work with real arrays in the BX-
24 environment. You can create arrays of any data type except strings or other arrays. You
can then reference the elements of the array using an index number. This feature makes it
handy to manipulate such things as data streams, where you want to store a series of bytes
in one compact package.

Before you can send your programs to the BX-24 chip they must be compiled. This is
done in the BasicX editor by choosing the Compile command from the Compile menu.

506 USING THE BASICX MICROCONTROLLER

FIGURE 32.4 Use the BasicX program editor to
create, edit, compile, and (optionally)
download programs for the BX-24.

Compiling can take a while on slower machines, so be patient. Syntax errors are flagged, and
if they are found, compiling stops. When you have successfully compiled the program it can
then be downloaded to the BX-24 chip. This can be done from the BasicX editor or from the
download console. After the program has been successfully compiled, it can be redown-
loaded any number of times. It does not need to be recompiled before each download.

Multitasking with the BX-24
One of the more valuable uses subroutines provide is the ability to create multitasking pro-
grams. Multitasking is a built-in feature of the BasicX operating system. In most instances,
the multitasking is “preemptive,” meaning that the BasicX operating system forces the BX-
24 microcontroller to “time-slice” between each multitasked subroutine. Each slice is given
1/512 of a second, more than enough to complete over a hundred instructions before mov-
ing on to the next subroutine. (The BX-24 processes some 65,000 instructions per second,
or approximately 127 instructions per time-slice.) A few of the commands supported in the
BasicX system suspend multitasking because they are sensitive to timing. These include
such commands as InputCapture (explained later in this chapter), which accurately mea-
sures the duration of signals received by the BX-24.

While multitasking is a powerful feature of the BX-24, it’s not always easy to imple-
ment. For each subroutine that you wish to multitask you must manually calculate the
amount of RAM needed to hold data for that subroutine while the system switches. This
calculation is necessary so sufficient “stack space” is allocated to hold the data as the BX-
24 services each task. If you underestimate the RAM requirements, your program won’t
work properly; if you overestimate the requirements, you waste precious memory.

BasicX Functions for Robotics
The BX-24 is a general-purpose microcontroller, so many of its built-in features are geared
toward any typical personal or commercial microcontroller application. Still, a number of
features of the BasicX programming language lend themselves for use in robotics. These
features are implemented as functions added to the BasicX language. To use a feature, you
merely include it in your program along with any necessary command parameters.

Note: Several of these functions require you to use version 1.45 or later of the BasicX
compiler. If you’re already a BX-24 owner, you’ll also need to make sure that your chip
has the latest BasicX operating system firmware embedded into it. Check the BasicX site
(www.basicx.com) for details.

REAL-TIME CLOCK

The BX-24 contains its own real-time clock (RTC), accurate to within several seconds per
day. You must set the correct time whenever you power up the BX-24, but once the time is
set, you can use the RTC to measure events. For example, you can write a robot program

BASICX FUNCTIONS FOR ROBOTICS 507

that accurately marks the time it takes to travel from one room to another. The RTC is also
handy for data logging, which allows your robot to roam around the house or yard and
store data from its sensors. Coupled with the BX-24’s ability to optionally store data in
EEPROM, the data log will survive even if power is removed to the chip.

GETADC AND PUTDAC

As mentioned earlier, the BX-24 has its own eight-channel, 10-bit ADC. With the GetADC
function, you can read a voltage level on any of eight I/O pins and correlate that voltage
level with a binary number (from 0 to 1023). Conversely, you can use the PutDAC func-
tion to output a pulse train that will mimic a variable voltage.

SHIFTIN AND SHIFTOUT

With ShiftIn you can receive a series of bits on a single I/O pin and convert them to a single
byte in a variable. ShiftOut does the inverse, converting a byte into a series of bits. Both func-
tions allow you to specify an I/O pin to be used as the data source and another I/O pin for the
clock. The BasicX software automatically triggers the clock pin for each bit received or sent.
The ShiftIn and ShiftOut functions are particularly handy when you are using serially based
components, which allow you to interface with devices using only two I/O lines.

OPENCOM

The BX-24 supports as many serial ports as you have available I/O pins. With OpenCom
you can establish serial communications with other BX-24 chips or any other device that
supports serial data transfer. One common use for OpenCom is to establish a link from the
BX-24 chip back to the download window of your PC. This window can serve as a termi-
nal for debugging and other monitoring tasks.

PULSEIN AND PULSEOUT

The PulseIn function waits for the level at a given I/O pin to change state. One practical
application of this feature is to activate some function on your robot when a critical button is
pressed. PulseOut sends a pulse of a certain duration (in 1.085 microsecond units) out a
given I/O pin. PulseOut is one of the most commonly used functions and is used to blink
LEDs, trigger sonar pings, and command servo motors to move to a new location. Note that
both PulseIn and PulseOut turn off the task-switching feature of the BX-24. Several other
BasicX functions behave in the same way because they literally “take over” the chip. Because
these functions hog processor time, both can also cause errors in the real-time clock.

INPUTCAPTURE

Somewhat akin to PulseIn, InputCapture watches for signal transition on a specific I/O pin of
the BX-24. InputCapture can time the duration of these transitions, thereby giving you a
“snapshot” of a digital pulse train, including how long each pulse lasted. One application of
InputCapture is watching for and decoding the serial signals from an infrared remote control.

508 USING THE BASICX MICROCONTROLLER

PLAYSOUND

The PlaySound function outputs a waveform that, when connected to an amplifier via a
decoupling capacitor, allows you to play previously sampled sound that has been stored in
the EEPROM. You can play back sounds at various sampling rates and control the number
of times the sound is repeated. The repeat function is a handy way to stretch a relatively
short sound sample into a longer one—for example, the “chug-chug” of a machine motor
or a series of blips.

ADDITIONAL USEFUL FUNCTIONS FOR ROBOTICS

In addition to BX-24’s built-in functions, you can access many of the internal hardware reg-
isters of the BX-24 chip. The BX-24 is based on the Atmel AT90S8535 microcontroller
(download the data sheet for the ‘8535 to learn more about the internals of this powerful
chip). By controlling the hardware registers of the BX-24 you can program features that the
BasicX language itself does not directly support. For example, by setting a few registers for
Timer1 (one of three timers in the Atmel ‘8535), you can produce dual pulse width modu-
lated (PWM) signals, which are useful for controlling the speed of DC motors. In a practi-
cal circuit, you will need to interface the two PWM outputs of the BX-24 to a suitable tran-
sistor or H-bridge circuit in order to provide enough drive current to run the motors.

Working directly with the hardware registers of the BX-24 is not for the feint of heart,
however. If you want to try this technique, first study the Atmel AT90S8535 data sheet and
learn how the registers of the chip work. It’s entirely possible to set the registers in a way
that will crash the chip, rendering it inoperative (of course, you can always reset the BX-
24 and try again with a new program).

A Sample BX-24 Program
Constructing a BX-24 program involves at least one subroutine, called Main, and one or
more BasicX commands. In the following program example, the BX-24 flashes its red and
green LEDs on and off several times each second.

LISTING 32.1

Sub Main()
' BX-24 LED demonstration.
Const GreenLED As Byte = 26
Const RedLED As Byte = 25
Const LEDon As Byte = 0
Const LEDoff As Byte = 1

Do
' Red pulse.
Call PutPin(RedLED, LEDon)
Call Delay(0.07)
Call PutPin(RedLED, LEDoff)

Call Delay(0.07)

' Green pulse.

A SAMPLE BX-24 PROGRAM 509

Call PutPin(GreenLED, LEDon)
Call Delay(0.07)
Call PutPin(GreenLED, LEDoff)

Call Delay(0.07)
Loop
End Sub

Here’s how the program works. The following commands,

Sub Main()
...

End Sub

form the main subroutine that is automatically executed when the BX-24 is first turned on
or when it is reset. You can have additional subroutines in the program, each with a differ-
ent name, but at a minimum you need one subroutine called Main to get things started:

Const GreenLED As Byte = 26
Const RedLED As Byte = 25
Const LEDon As Byte = 0
Const LEDoff As Byte = 1

These lines define four constants, using the Const statement (similar to Dim). Const
stands for “constant” and represents a variable that will never be changed again in the pro-
gram. In this example, each Const statement defines three things:

The name of the variable, such as GreenLED or LEDon.
The type of variable (how many bits it requires). In all four instances the variables are
of type Byte and each requires eight bits
The value of each variable. For example, GreenLED is assigned the value 26; LEDoff is
assigned the value 0.

All four constants are used elsewhere in the program, and they serve as a convenient
way to change values should that ever be necessary. The statements,

Do
...

Loop

set up an “infinite loop.” That is, the loop repeats for as long as power is applied to the BX-
24 (or until the chip is reset). Without the Do…Loop statements the commands in the pro-
gram would execute just once. The loop provides a simple way to repeat the commands
indefinitely:

' Red pulse.
Call PutPin(RedLED, LEDon)
Call Delay(0.07)
Call PutPin(RedLED, LEDoff)
Call Delay(0.07)

Each BasicX function, such as PutPin, is preceded by an optional Call statement. This tells
the BasicX operating system to perform the named function. The PutPin function, called

510 USING THE BASICX MICROCONTROLLER

twice in this example, changes the state of a specified I/O line. Note the use of the con-
stants. The syntax for PutPin is as follows:

PutPin (PinNumber; Value)

where PinNumber is the number of the pin you want to use (e.g., pin 25 for the red LED),
and Value is either 1 for on (or logical HIGH) or 0 for off (or logical LOW).

The Delay function causes the BX-24 to pause a brief while, in this case 70 millisec-
onds. Delay is called twice, so there is a period of time between the on/off flashing of each
LED:

' Green pulse.
Call PutPin(GreenLED, LEDon)
Call Delay(0.07)
Call PutPin(GreenLED, LEDoff)
Call Delay(0.07)

The process is repeated for the green LED.

Controlling RC Servos with the BX-24
You can easily control RC servos with the BX-24 using a few simple statements. While
there is no built-in “servo command” as there is with the OOPic microcontroller (see
Chapter 33), the procedure is nevertheless very easy to do in the BX-24. Here’s a basic pro-
gram that places a servo connected to pin 20 of the BX-24 at its approximate mid-point
position. (I say “approximate” because the mechanics of RC servos can differ between
makes, models, and even individual units):

Sub Main
Do

Call PulseOut(20, 1.5E-3, 1)
Call Delay(0.02)

Loop
End Sub

The program continuously runs because it’s within an infinite Do loop. The PulseOut
statement sends a short 1.5-millisecond (ms) HIGH pulse to pin 20. The Delay statement
causes the BX-24 to wait 20 milliseconds before the loop is repeated all over again. With
a delay of 20 milliseconds, the loop will repeat 50 times a second (50 * 20 milliseconds �
1000 milliseconds, or one second).

Note the optional use of scientific notation for the second parameter of PulseOut. Using
the value 0.0015 would yield the same result. You should be aware that the BX-24 supports
two versions of the PulseOut statement: a float version and an integer version:

The float version is used with floating-point numbers, that is, numbers that have a
decimal point.
The integer version is used with integers, that is, whole numbers only.

CONTROLLING RC SERVOS WITH THE BX-24 511

The BX-24 compiler automatically determines which version to use based on the data
format of the second parameter of the PulseOut statement. If you use

Call PulseOut(20, 20, 1)

it tells the BX-24 you want to send a pulse of 20 “units.” A unit is 1.085 microseconds
long; 20 units would produce a very short pulse of only 21.7 microseconds. To continue
working in more convenient milliseconds, be sure to use the decimal point:

Call PulseOut(20, 0.020, 1)

This creates a pulse of 20 milliseconds in length.
Listing 32.2 shows a more elaborate servo control program and is based on an appli-

cation note provided on the BasicX Web site. This program allows you to specify the
position of the servo shaft as a value from 0 to 100, which makes it easier for you to use.

LISTING 32.2

Const ServoPin As Byte = 20
Const RefreshPeriod As Single = 0.02
Const NSteps As Integer = 100
Dim SetPosition As Byte
Dim Position As Single, PulseWidth As Single

Sub Main ()
' Moves a servo by sending a single pulse.
' Insert position as a value from 0 to 100
SetPosition = 50 ' move to mid-point

Position = CSng(SetPosition) / CSng(NSteps)
Do

' Translate position to pulse width, from 1.0 to 2.0 ms
PulseWidth = 0.001 + (0.001 * Position)

' Generate a high-going pulse on the servo pin
Call PulseOut(ServoPin, PulseWidth, 1)
Call Delay(RefreshPeriod)

Loop
End Sub

The five lines at the beginning of the program set up all the variables that are used.
The line

Const ServoPin As Byte = 20

creates a byte-sized constant and also defines the value of the constant as pin 20. Because
it is a constant, the value assigned to ServoPin cannot be changed elsewhere in the pro-
gram. Similarly, the lines

Const RefreshPeriod As Single = 0.02
Const NSteps As Integer = 100

create the constants RefreshPeriod and NSteps. RefreshPeriod is a single-precision float-
ing-point number, meaning that it can accept numbers to the right of the decimal point.
Nsteps is an integer and can accept values from �32768 to 32767.

512 USING THE BASICX MICROCONTROLLER

The main body of the program begins with Sub Main. The statement

SetPosition = 50

sets the desired position of the servo relative to the total number of steps defined in NSteps
(in the case of our example, 100). Therefore, a SetPosition of 50 will move the servo to its
approximate midpoint. The line

Position = CSng(SetPosition) / CSng(NSteps)

produces a value from 0.0 to 1.0, depending on the number you used for SetPosition. With
a value of 50, the Position variable will contain 0.5. The Position variable is then used with-
in the Do loop that follows. Within this loop are the following statements:

PulseWidth = 0.001 + (0.001 * Position)
Call PulseOut(ServoPin, PulseWidth, 1)
Call Delay(RefreshPeriod)

The first statement sets the pulse width, which is between 1.0 and 2.0 milliseconds. The
PulseOut statement sends the pulse through the indicated servo pin (the third parameter, 1,
specifies that the pulse is positive-going, or HIGH). Finally, the Delay statement delays the
BX-24 for the RefreshPeriod, in this case 20 milliseconds (0.02 seconds).

Reading Button Inputs and Controlling
Outputs
A common robotics application is reading an input, such as a button, and controlling an
output, such as an LED, motor, or other real-world device. Listing 32.3 shows some sim-
ple code that reads the value of a momentary push button switch connected to I/O pin
20. The switch is connected in a circuit, which is shown in Fig. 32.5, so when the switch
is open, the BX-24 will register a 0 (LOW), and when it’s closed the BX-24 will regis-
ter a 1 (HIGH).

The instantaneous value of the switch is indicated in the LED. The LED will be off
when the switch is open and on when it is closed.

LISTING 32.3
Sub Main()
Const InputPin As Byte = 20
Const LED As Byte = 26
Dim State as Byte
Sub Main()
Do

' Read I/O pin 20
State = GetPin(InputPin)
' Copy it to the LED
Call PutPin(LED, State)

READING BUTTON INPUTS AND CONTROLLING OUTPUTS 513

Loop
End Sub

Now let’s see how the program works. The lines,

Const InputPin As Byte = 20
Const LED As Byte = 26
Dim State as Byte

set the constant InputPin as I/O pin 20, and the constant LED as I/O pin 26. (Recall that
one of the BX-24’s on-board LEDs—the green one, by the way—is connected to I/O pin
26.) Finally, the variable State is defined as type Byte:

Do
' Read I/O pin 20
State = GetPin(InputPin)
' Copy it to the LED
Call PutPin(LED, State)

Loop

The Do loop repeats the program over and over. The GetPin statement gets the current
value of pin 20, which will either be LOW (0) or HIGH (1). The companion PutPin state-
ment merely copies the state of the input pin to the LED. If the switch is open, the LED is
off; if it’s closed, the LED is on.

Additional BX-24 Examples
So far we’ve just scratched the surface of the BX-24’s capabilities. But fear not: throughout
this book are several real-world examples of BX-24 being using in robotic applications. For
instance, in Chapter 41 you’ll learn how to use the BX-24 to interface to a sophisticated
accelerometer sensor. In addition, you can find several application notes for the BX-24 (and
its “sister” microcontrollers, such as the BX-01) on the BasicX Web page (www.basicx.com).

514 USING THE BASICX MICROCONTROLLER

10K

To BasicX-24
I/O pin 20

+5 vdc
(from BX-24
carrier board)

(ground from
BX-24 carrier board)

FIGURE 32.5 Wire the switch so it con-
nects to the V (pin 21,
not pin 24) of the BX-24.
The resistors are added for
safety.

From Here
To learn more about… Read
Stepper motors Chapter 19, “Working with Stepper Motors”
How servo motors work Chapter 20, “Working with Servo Motors”
Different approaches Chapter 28, “An Overview of Robot ‘Brains’”
for adding brains to your robot
Connecting the OOPic Chapter 29, “Interfacing with Computers and
microcontroller to sensors Microcontrollers”
and other electronics

FROM HERE 515

