
In the “Wizard of Oz,” the Scarecrow laments “If I only had a brain.” He imagines the
wondrous things he could do and how important he’d be if he had more than straw filling
his noggin! In a way, your robot is just like the Scarecrow. Without a computer to control
it, your robot can only be so smart. Hardwiring functions into the robot is a suitable alter-
native to computer control, and you should always look to simpler approaches than imme-
diately connecting all the parts of your robot to a super Cray-2 computer.

Yet there are plenty of applications that cry out for computer control; some tasks, like
image and voice recognition, require a computer. One of the easiest ways to connect a
robot to a computer is to use an IBM PC compatible. You can readily wire up your robot
to the PC’s parallel port. The parallel port is intended primarily for connecting the com-
puter to printers, plotters, and some other computer peripherals. With a few ICs and some
rudimentary programming, it can also be used to directly control your robots. If your com-
puter has several parallel ports, you can use them together to make a very sophisticated
control system.

Despite the many advantages of the computer’s parallel port, using it involves some dis-
advantages too. You are limited to controlling only a handful of functions on your robot
because the parallel port has only so many input and output lines—although with some
creative design work you can effectively increase that number. Also, most parallel ports are
designed primarily to get data out of the computer, not into it, though many parallel ports
are bidirectional under low-level software control. The average parallel port also has a

30
COMPUTER CONTROL VIA PC

PRINTER PORT

459

From Robot Builder’s Bonanza, 2nd Edition. See www.robotoid.com for more. © 2001

number of input-specific lines for directly communicating with a printer or other periph-
eral, though the number of input lines is small.

This chapter deals primarily with how to use the parallel port on an IBM PC compati-
ble. Why the PC? It’s a common computer—hundreds of millions of them are in use today.
While the PC comes in many styles, shapes, and sizes, they all do basically the same thing
and provide the same specifications for both software and parallel port output. If you don’t
want to use your main PC for your robot work, you can probably find a secondhand
machine for under $100.

460 COMPUTER CONTROL VIA PC PRINTER PORT

The text that follows pertains to the parallel port on an IBM PC compatible used in stan-
dard mode, and not in enhanced, bidirectional mode. On some computers, you may
need to modify the system BIOS settings to turn off enhanced and/or bidirectional set-
tings. Otherwise, the port may not behave the way you want it to. You can modify the
BIOS settings by restarting your computer and following the “Setup” instructions shown
on the screen as the PC boots.

The Fundamental Approach
In the original design of the IBM PC, system input and output—such as the parallel port,
serial port, and video display—were handled by “daughter boards” that were plugged into
the computer’s main motherboard. This design practice continues, though today the aver-
age PC compatible comes with features such as parallel and serial port, video display,
modem, and even a sound card already built into the motherboard. Whether these features
are built into the motherboard or added by plugging in a daughter board, all of are
input/output (I/O) ports of one type or another.

The PC accesses its various I/O ports by using an address code. Each device or board
in the computer has an address that is unique to itself, just as you have a home address that
no one else in the world shares with you. Very old IBM PCs and compatibles used a mono-
chrome display adapter board, which included its own parallel port. The printer port on this
board used a starting address of 956. This address is in decimal, or base-10 numbering
form. You may also see PC system addresses specified in hexadecimal, or base-16, form.
In hex, the starting address is 3BCH (the address is really 3BC; the H means that the num-
ber is in hex). By convention, the parallel port contained on an I/O expansion board, or
built into the motherboard, has a decimal address of 888 (or 378H hex) or 632 (278H).

Parallel ports in the PC are given the logical names LPT1:, LPT2:, and LPT3:. Every
time the system is powered up or reset, the ROM BIOS (Basic Input/Output System) chip
on the computer motherboard automatically looks for parallel ports at these I/O addresses,
3BCH, 378H, and 278H, in that order. (It skips 3BCH if you don’t have a monochrome
card or printer port installed, which you probably don’t unless your machine is ancient!).
The logical names are assigned to these ports as they are found.

Table 30.1 shows the port addresses for the parallel ports in the PC. Applications software
often use the logical port names instead of the actual addresses, but in attaching a robot to
the computer we’ll need to rely on the actual address—hence the need to go into these details.

The PC parallel port is a 25-pin connector, which is referred to as a DB-25 connector.
Cables and mating connectors are in abundant supply, which makes it easy for you to wire
up your own peripherals. You can buy connectors that crimp onto 25-conductor ribbon
cable or connectors that are designed for direct soldering. Fig. 30.1 shows the pinout des-
ignations for the connector (shown with the end of the connector facing you). Note that
only a little more than half of the pins are in use. The others are either not connected inside
the computer or are grounded to the chassis. Table 30.2 shows the meaning of the pins.

Notice that not one address is given, but three. The so-called starting address is used for
data output register. The data output register is comprised of eight binary weighted bits,
something on the order of 01101000 (see Fig. 30.2). There are 256 possible combinations
of the eight bits. In a printer application, this means that the computer can send specific
code for up to 256 different characters. The data output pins are numbered 2 through 9.
The bit positions and their weights are shown in Table 30.3.

The other two registers of the parallel port, have different addresses (base address of the
port, plus either one or two). These registers are for status and control. The most commonly
used status and control bits (for a printing application, anyway) are shown in Fig. 30.3 on
page 464. The function of the status and control bits is shown in Table 30.4 on page 465.

To a printer, one of the most important control pins is pin number 1. This is the
STROBE line, which is used to tell the peripheral (printer, robot) that the parallel data on
lines 2 through 9 is ready to be read. The STROBE line is used because all the data may
not arrive at their outputs at the same time. It is also used to signal a change in state. The
output lines are latched, meaning that whatever data you place on them stays there until
you change it or turn off the computer. During printing, the STROBE line toggles HIGH
to LOW and then HIGH again. You don’t have to use the STROBE line when command-
ing your robot, but it’s a good idea if you do.

Other control lines you may find on parallel printer ports include the following (some
of these lines aren’t always implemented):

Auto form feed
Select/deselect printer

THE FUNDAMENTAL APPROACH 461

TABLE 30.1 ADDRESSES OF PARALLEL PORTS.

ADAPTER DATA STATUS CONTROL

Parallel port on 3BCH, 956D 3BDH, 957D 3BEH, 958D
monochrome
display card

PC/XT/AT 378H, 888D 379H, 889D 37AH, 890D
printer adapter

Secondary LPTx card 278H, 632D 279H, 633D 27AH, 634D
(as LPT2:)

“H” Suffix � Hex

“D” Suffix 5 Decimal

462 COMPUTER CONTROL VIA PC PRINTER PORT

1

14

13

25

Busy

Select

PE Strobe
Data lines

Ground

FIGURE 30.1 Pinout of the DB25 parallel port
connector, as used on IBM PC-
compatible computers.

TABLE 30.2 PARALLEL PORT PINOUT FUNCTIONS.

PIN FUNCTION (PRINTER APPLICATION)

1 Strobe

2 Data bit 0

3 Data bit 1

4 Data bit 2

5 Data bit 3

6 Data bit 4

7 Data bit 5

8 Data bit 6

9 Data bit 7

10 Acknowledge

11 Busy

12 OE (out of paper, or empty)

13 Printer online

14 Auto line feed after carriage return

15 Printer error

16 Initialize printer

17 Select/deselect printer

18– 25 Unused or grounded

Initialize printer
Printer interrupt

Traditionally, the status lines are the only ones that feed back into the computer (as
mentioned earlier, most parallel printer ports are now bidirectional, but this is not a feature
we’ll get into this time around). There are five status lines, and not all parallel ports sup-
port every one. They are as follows:

Printer error
Printer not selected
Paper error

THE FUNDAMENTAL APPROACH 463

0

1

2

3

4

5

6

7

Computer

0

0

0

1

1

0

0

1

8-bit word at
output

FIGURE 30.2 The parallel port outputs eight bits at a
time.

TABLE 30.3 BIT POSITION WEIGHTS.

BIT POSITION WEIGHT

D7 � 128

D6 � 64

D5 � 32

D4 � 16

D3 � 8

D2 � 4

D1 � 2

D0 � 1

Acknowledge
Busy

The acknowledge and busy lines are commonly used for the same thing in a printer
application. However, depending on the design of the port in your computer, you can use
the two separately in your own programs. (One helpful tidbit: for a printing application
when the BUSY line is LOW, the ACK line is HIGH.)

Robot Experimenter’s Interface
It’s not generally a good idea to connect robot parts directly to a parallel port because
wiring mistakes in the robot could damage the circuitry in your PC. Moreover, the par-
allel port in your PC may not have the drive current needed to directly operate relays,
solenoids, and power transistors. By using an interface, discussed later in this chapter,
you can help protect the circuitry inside your computer and provide more drive current
for operating robotic control devices. This interface, called the Robot Experimenter’s
Interface for lack of a better name, lets your PC control up to 12 robotic functions (such
as motors) and read the values of up to four robotic switches or other digital sensing
devices.

464 COMPUTER CONTROL VIA PC PRINTER PORT

0

1

2

3

4

5

6

7

Strobe

Busy

Parallel
computer port

Printer Error

Select

Inputs (from device)

Data outputs

Data ready

FIGURE 30.3 The minimum parallel port: eight data out-
puts, a STROBE (Data Ready) line, and
inputs from the printer, including Select,
Printer Error, and Busy.

CONSTRUCTING THE INTERFACE

The schematic diagram for the Robot Experimenter’s Interface is shown in Fig. 30.4. You
can build it in under an hour, and it requires very few components. The interface uses a
solderless experimenter’s breadboard so you can create circuits right on the interface. The
input and output buffering is provided by the 74367 hex buffer driver. Three such chips are
used to provide 18 buffered lines, which is more than enough.

You may wish to build the interface in an enclosure that is large enough to hold the
breadboard and the wire-wrapping socket. Make or buy a cable using a male DB-25 con-
nector and a four- or five-foot length of 25-connector ribbon cable. Solder the data output,
status, and control line conductors to the proper pins of the 74367 ICs. Route the outputs
to the bottom of the wire-wrap socket. A finished interface should look something like the
one in Fig. 30.5. Using the interface requires you to provide a 5 vdc source. Do not try
to power the interface from the parallel port! Use a length of 22 AWG solid

ROBOT EXPERIMENTER’S INTERFACE 465

TABLE 30.4 PARALLEL PORT STATUS AND CONTROL BITS.

CONTROL BITS

BIT FUNCTION

0 LOW � normal; HIGH � output of byte of data

1 LOW � normal; HIGH � auto linefeed after carriage return

2 LOW � initialize printer; HIGH � normal

3 LOW � deselect printer; HIGH � select printer

4 LOW � printer interrupt disables; HIGH � enabled

5– 7 Unused

STATUS BITS

BIT FUNCTION

0– 2 Unused

3 LOW � printer error; HIGH � no error

4 LOW � printer not on line; HIGH � printer on line

5 LOW � printer has paper; HIGH � out of paper

6 LOW � printer acknowledges data sent; HIGH � normal

7 LOW � printer busy: HIGH � out of paperH

Any time you mess around with a computer there is a risk of damaging it, and this goes
for the circuit presented next. This is not a project you should consider if you’re new to
electronics and aren’t sure what you’re doing.

466 COMPUTER CONTROL VIA PC PRINTER PORT

1

15
OE

OE

Vcc

GND
8

2 3

4 5
6 7

10 IC1 9
12 74367 11

14 13

1

2

3
4
5

6

1

15
OE

OE

GND

2 3
4 5
6 7

10 IC2 9
12 74367 11

7

8
9

10
11

1

15
OE

OE

GND

2 3
5 4
7 6

109

1211

13 14

13
14
15

16
17
18Busy

To Pin 11

ACKTo Pin 10

PE
To Pin 12

On-Line
To Pin 13

Printer Error
To Pin 15
To Pin 17 Select/Desel

To Pin 1 Strobe

To Pin 2 Data 0

To Pin 3
To Pin 4
To Pin 5

To Pin 6

To Pin 7
To Pin 8

Data 1
Data 2
Data 3

Data 4

Data 5

To Pin 9

Data 6

Data 7

Initialize
LF/CRTo Pin 15

To Pin 16
12

+5vdc

To Pins 18-25

+5vdc

+5vdc

18-pin
wire-wrap

socket

16

Vcc
16

Vcc
16

8

8

IC3
74367

FIGURE 30.4 Schematic for the Robot Experimenter’s Interface.

conductor wire to connect the signals at the wire-wrap socket to whatever points on the
breadboard you desire.

TESTING THE INTERFACE

The first order of business is to connect the Robot Experimenter’s Interface as shown in
Fig. 30.6. Connect the cable to the parallel port of your computer (some of the LEDs will
light). Use a DOS-based Basic interpreter program to manipulate the three registers (data,
control, and status) of the parallel port. Most older PCs will have a Basic interpreter either
built into the BIOS (as was the case with the original IBM PC) or provided as a separate
.com or .exe executable file. If your PC has MS-DOS 5.0 or later, look for QBasic, an
updated version of the venerable Microsoft Basic from the late 1970s. All of the program
examples in this chapter assume you’re using QBasic, or a similar updated Basic variant.

Note that if you’re using Microsoft Windows 95 or later, QBasic probably isn’t installed
on your computer, but it is provided on the Windows CD-ROM. Look for the qbasic.exe

ROBOT EXPERIMENTER’S INTERFACE 467

TABLE 30.5 PARTS LIST FOR THE ROBOT EXPERIMENTER’S INTERFACE.

IC1– IC3 74367 TTL Hex Inverter/Buffer IC

Misc 18-pin wire-wrap socket, solderless experimenter’s board, binding posts
(for power connection), enclosure

V Vgn

74367 74367 74367

18-pin socket

Power

Solderless breadboard

Wire-wrap board
(for mounting components)

FIGURE 30.5 The completed Robot Experimenter’s Interface. Mount the bread-
board, wire-wrap socket, ICs, and power terminals on a perf
board, and secure the board into a project case.

program file in the OtherOldmsdos directory, or visit Microsoft’s Web page at
www.microsoft.com for additional information.

Type the program shown in Listing 30.1. The program assumes you’re using the stan-
dard LPT1: port, which has an address of 888 decimal (378 hex). If you’re using a differ-
ent parallel port, change the BaseAddress as required. Refer to Table 30.1 earlier in this
chapter. You’re now ready to run the program (in QBasic, press Shift F5).

LISTING 30.1.

BaseAddress = 888 ' Base address of parallel port
DataPort = BaseAddress ' Address of data register

FOR Count = 0 TO 255
OUT DataPort, Count

FOR x = 1 TO 500: NEXT x
NEXT Count

The LEDs connected to each of the data lines should flash on and off very rapidly. Some
of the LEDs will flash more than the others; this is normal. When the program finishes all
of the LEDs should stay lit. If the LEDs do not flash, recheck your wiring and make sure

468 COMPUTER CONTROL VIA PC PRINTER PORT

V Vgn

FIGURE 30.6 Component arrangement for testing
the Robot Experimenter’s Interface.

the program has been typed correctly. The LEDs that are on represent a logic 1 state; those
that are off represent a logic 0 state.

Fig. 30.7 is a blank dotted-line version of the Robot Experimenter’s Interface. Feel free
to use it to sketch out your own designs.

Using the Port to Operate a Robot:
The Basics
The 74367 used in the Robot Experimenter’s Interface cannot sink or source more than
about 20 mA of current per output, and as you would expect you can’t operate a motor
directly from it. However, it can drive a low-power relay, transistor, or H-bridge. See
Chapter 18, “Working with DC Motors,” for some popular ways to bridge the low-level
output of the interface to control a real-world robot.

The simplest way to operate your robot via computer is to connect each of the data out-
put lines to a suitable transistor, small relay, or H-bridge input. You can control the on/off
state of up to eight motors or other devices using just the eight data lines of the parallel
port (you can actually control even more devices; more on this in a bit).

Let’s say that you only have three motors connected to the interface and that you are
using lines 0, 1, and 2 (pins 2, 3, and 4, respectively). To turn on motor 1, you must

USING THE PORT TO OPERATE A ROBOT: THE BASICS 469

V Vgn

FIGURE 30.7 A blank Robot Experimenter’s
Interface layout. Feel free to copy it
and use it to make your own designs.

activate the bit for line 0, that is, make it HIGH. To do this, output a bit pattern number to
the port using the BASIC OUT command. The OUT command is used to send data to an
I/O port. The command is used with two parameters: port address and value. The two are
separated by a comma. For port address, use the base address of the parallel port; for data,
use the value you want to send to the port. Here’s an example:

OUT 888, 10

(Note: In the test code you used variables, BaseAddress and DataPort, instead of “hard-
wired” literal values for the port address. It’s a better practice to use variables because
that makes it easier to change your program. For right now, however, I’ll use literal val-
ues such as 888 for short examples, but revert back to using variables in the larger ready-
to-go program code.)

The base address is 888, and the value is decimal 10. Table 30.6 shows the first 16 bina-
ry numbers and the bit pattern that constitutes them.

For most robotic applications where you use the parallel port to control motors, you’ll
need two data lines for each motor: one to turn the motor on and off and another to con-

470 COMPUTER CONTROL VIA PC PRINTER PORT

TABLE 30.6 DECIMAL AND BINARY EQUIVALENTS (0–15 ONLY).

DECIMAL BINARY

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

trol its direction. You can use the four bits in Table 30.6 to control the on/off state of the
motors as well as their direction. For this you might use data lines 0, 1, 2, and 3 (pins 2, 3,
4, and 5, respectively, of the interface).

Table 30.7 lists all the possible bit patterns for data lines 0–3. You can connect the motor
relays to the pins in any order, but the table assumes the following:

Data line 0 (bit 1) controls the On/Off relay for motor 1
Data line 1 (bit 2) controls the On/Off relay for motor 2
Data line 2 (bit 3) controls the Direction relay for motor 1
Data line 3 (bit 4) controls the Direction relay for motor 2

You should get into the habit of initializing the port at the beginning of the program by
outputting decimal 0. That prevents the motors from energizing at random. The line of
code for this is as follows:

USING THE PORT TO OPERATE A ROBOT: THE BASICS 471

TABLE 30.7 DATA BITS FOR CONTROLLING TWO MOTORS.

MOTOR1 MOTOR 2

BINARY DECIMAL CONTROL DIRECTION CONTROL DIRECTION
VALUE (BIT 1) (BIT 3) (BIT 2) (BIT 4)

0000 0 Off Forward Off Forward

0001 1 On Forward Off Forward

0010 2 Off Forward On Forward

0011 3 On Forward On Forward

0100 4 Off Reverse Off Forward

0101 5 On Reverse Off Forward

0110 6 Off Reverse On Forward

0111 7 On Reverse On Forward

1000 8 Off Forward Off Reverse

1001 9 On Forward Off Reverse

1010 10 Off Forward On Reverse

1011 11 On Forward On Reverse

1100 12 Off Reverse Off Reverse

1101 13 On Reverse Off Reverse

1110 14 Off Reverse On Reverse

1111 15 On Reverse On Reverse

OUT 888, 0

To activate just motor 1, choose a decimal number where only the first bit changes.
There is only one number that meets that criterion: it is decimal 1, or 0001 (we will ignore
bits 5 through 8 for this discussion since they are not in use). So type:

OUT 888, 1

Run this program; motor 1 turns on. To turn it off, send a decimal 0 to the port, as described
earlier. You use the same technique to turn on motor 2 or both motors 1 and 2 at the same time.
To turn on both motors at the same time, for example, look for the binary bit pattern where
the first and second bits are 1 (it’s decimal 3), and output this value to the port.

Controlling a Two-wheel Robot
Controlling the common two-wheeled robot is a simple matter of sending the right bit pat-
terns to the parallel port. Note that binary 0000 (decimal 0) turns off both motors, so the
robot stops. Changing the binary bit pattern activates the right or left motor and controls
its direction. Table 30.8 lists the most common bit patterns you will use.

When writing the control program for your robot you may find it necessary to insert
short pauses between each state change (motor 1 forward and reverse, for example). You
can create simple pauses in Basic with “do nothing” FOR…NEXT loops as shown in the
testing program in Listing 30.2. The program first resets all bits to 0, then sleeps (waits)
one second. The program then goes through a timed routine turning on different motors
and reversing their direction: forward, reverse.

Note that do-nothing FOR…NEXT loops are processor-speed dependent. Adjust the
value of one or both loops to control the actual delay for your computer. You may also wish
to use the SLEEP statement, which inserts a delay for the number of seconds you specify.
Other versions of Basic provide for additional time-delay commands. Most Basic pro-
gramming environments, such as Microsoft QBasic (QuickBasic), allow you to terminate

472 COMPUTER CONTROL VIA PC PRINTER PORT

TABLE 30.8 COMMON BIT PATTERNS FOR CONTROLLING TWO MOTORS.

BINARY DECIMAL FUNCTION

0000 0 All stop

0011 3 Forward

1111 15 Reverse

0010 2 Right turn

0001 1 Left turn

0111 7 Hard right turn (clockwise spin)

1011 11 Hard left turn (counterclockwise spin)

the program at any time by pressing Ctrl Break (break is the Pause/Break key, usually
located near the numeric keypad).

LISTING 30.2.

DECLARE SUB DelaySub ()
BaseAddress = 888 ' Base address of parallel port
DataPort = BaseAddress ' Address of data register

OUT DataPort, 0
SLEEP 1
OUT DataPort, 3
DelaySub
OUT DataPort, 15
DelaySub
OUT DataPort, 2
DelaySub
OUT DataPort, 1
SLEEP 2
OUT DataPort, 0

SUB DelaySub
' adjust delay as necessary
FOR DELAY = 1 TO 100000: NEXT DELAY
END SUB

Controlling More Than Eight Data Lines
As shown in the previous examples each motor requires two bits. Therefore, one parallel
port can control the action and direction of four motors. However, you can actually control
more motors (or other devices) by using a number of simple schemes and without resort-
ing to using additional parallel ports.

The most straightforward method for expanding a single parallel port is to make use of
some or all of the data lines of the control register. You send bits to these control lines in
exactly the same way as you send bits to the data output lines, except that you use a dif-
ferent address. For the standard LPT1: port at decimal 888, the decimal address for the
control lines is 890. Only the first five bits of the address are used in the port, which means
the decimal numbers you use will be between 0 and 31.

Let’s say you are using bit 2 of the control address (in a printer application, bit 2 is used
to initialize the printer). You turn that bit on—and no others—by entering the following
program line:

OUT 890, 4

Note that you can output a binary pattern to address 890, and it will not affect the data
output lines.

USING EXPANDED IO

Another way of increasing the number of controlled devices is to use a data demulti-
plexer. There are several types in both the TTL and CMOS IC families. A popular data

CONTROLLING MORE THAN EIGHT DATA LINES 473

demultiplexer (or “demux”) is the 74154. This chip takes four binary weighted input lines (1,
2, 4, 8) and provides 16 outputs. Only one output can be on at a time. See the schematic in
Fig. 30.8 to see how to hook it up. The IC is shown connected to the first four data output
lines of the parallel port. You can actually connect it to any four, and you don’t even have to
use all four lines. With just three lines, the demux allows you to control up to eight devices.

To select the device connected to the number 3 output of the demux, for example, you
apply a binary 3 (0011) to its input lines. Write the line as follows:

OUT 888, 3

A limitation of the demux is that you can’t control more than one device connected to it at
any one time. You can’t, for example, attach both drive motors to the demux outputs and have

474 COMPUTER CONTROL VIA PC PRINTER PORT

+5vdc

24

Vcc

19
Enable

12

Gnd

1

2

3

4

5

6

7

8

9

10

11

13

14

15

16

17

0

1

2

3

4

5

6

7

8

9

10

11

13

14

15

12

A

B

C

D

23

22

21

20

Data Input
18

Pin 2

Pin 3

Pin 4

Pin 5

Inputs
74154

FIGURE 30.8 Basic wiring diagram for the 74154 demultiplexer
chip.

them on at the same time. There will be many times, however, when your robot will only be
doing one thing (such as triggering an ultrasonic ranger). In these cases, the demux is perfect.

EXTERNAL ADDRESSING

As mentioned earlier in this chapter, all sorts of data and control lines are inside the com-
puter, on the microprocessor bus. There is also a set of special-purpose lines, the address
lines, that are used to pass data to specific devices and expansion boards. For example, you
address the data output lines of the parallel port by sending out the address 888.

The address for the parallel port triggers just the parallel port, but with some ingenuity
(and no extra components) you can wire up a “subaddress” scheme so the one parallel port
can fully control a very large number of devices. This is the third and most sophisticated
way to sap all the power out of the parallel port.

You can disable the 74367 hex buffer IC, which is used to link the port to the outside
world. In the Robot Experimenter’s Interface, the ENABLE lines of the chip, pins 1 and
15, are held LOW by tying them to the ground, so data is passed from the input to the out-
put. When the ENABLE pins are brought HIGH, the outputs are driven to a high-imped-
ance state and no longer pass digital data. In this way, the 74367 acts as a kind of valve.
The two ENABLE lines control different input/output pairs, as shown in Fig. 30.9. The
high-impedance disabled state is engineered so that many 74367 chips can be paralleled
on the same data lines, without loading the rest of the circuit.

You can use the ENABLE pins of the 74367 and a few of the unused control lines in the
parallel port to make yourself an electronic data selector switch. In operation, you output
a binary word onto the data output lines. You then send the word to the desired device by
addressing it with the control lines.

Here is an example: Let’s say that you have connected three subaddress ports to the par-
allel printer port, as shown in Fig. 30.10. Control lines 1, 2, and 3 are connected to the
ENABLE pins of the 74367. The inputs of the three 74367s are connected together. The
outputs of each feed to the specific device.

To turn on bits 0 and 1 on device 2, enter the following lines into Basic and run the pro-
gram:

OUT 888, 3
OUT 890, 2

The first line of the program outputs a decimal 3 to the data output register. That places
the binary bit pattern 00000011 on the parallel port data output lines. The next line enables
device 2 because it turns on the second 74367.

Inputting Data
Recall that a parallel port has a third and final input register for providing status. Most par-
allel ports support four or five status lines, which you can use to input data back into the
computer. The Robot Experimenter’s Interface uses the four status lines you are likely to
find in any parallel port. To read data from the port, you use the Basic INP statement (INP
for input). The input command is used as follows:

INPUTTING DATA 475

Y=INP(x)

In place of x you put the decimal address of the port you want to read. In the case of the
main printer port at starting address 888, the address of the status register is 889. The Y is a
variable used to store the return value for future use in the program. For testing, you can PRINT
the value of Y, which shows the decimal equivalent of the binary bit pattern on the screen.

Listing 30.3 is a sample program that displays the current values of the four inputs con-
nected to the Robot Experimenter’s Interface. The values are shown as 0 (“false”) and -1
(“true”). Bear in mind that the Busy and Online lines are active-low; therefore their logic
is the reverse of the others. The code in the test program “compensates” for the active-low
condition by reversing the logic in the If expressions.

Also note the less-than-straightforward method for determining if pins 15 and 12 are
triggered exclusively. These extra If tests are needed because the parallel port (most, any-
way) will automatically bring pin 12 HIGH if pin 15 is brought HIGH. Weirdness is also

476 COMPUTER CONTROL VIA PC PRINTER PORT

GND

7

8 9

10

11

12

13

14

15

16

6

5

4

3

2

1

OE

OE VCC

74367

I

O

I

O

I

O

I

O

I

O

IO

Inputs Outputs

OE I O

L

L

H

L L

HH

X HI-Z

Truth table -- 74367

FIGURE 30.9 The internal configura-
tion of the 74367 chip.
Note the two indepen-
dent ENABLE lines, on
pins 1 and 15.

encountered if pin 15 is brought HIGH while trying to read the values of pins 10 and 11.
The port reads pins 10 and 11 as LOW, even though they may be HIGH on the interface.
Again, this is the action of pin 15 (printer error), and for this reason, it’s usually a good
idea to limit its use or to ensure that the values of other inputs are ignored whenever pin
15 is HIGH.

LISTING 30.3.

DIM BaseAddress AS INTEGER, StatusPort AS INTEGER
DIM DataPort AS INTEGER, ControlPort AS INTEGER
DIM x AS INTEGER, Count
AS INTEGER
BaseAddress = 888
DataPort = BaseAddress
StatusPort = BaseAddress + 1
ControlPort = BaseAddress + 2

WHILE (1)
x = INP(StatusPort) + 1
IF (x AND 64) = 64 THEN

PRINT "Pin 10: 1"
ELSE

PRINT "Pin 10: 0"
END IF
IF (x AND 128) <> 128 THEN

PRINT "Pin 11: 1"
ELSE

INPUTTING DATA 477

Data
lines

Data
outputs

Data
outputs

Data
outputs

Data
lines

Data
lines

ENABLE

ENABLE

Pin

Pin 17

Pin 14

Parallel port
connector

74367

74367

74367

ENABLEPins 1-9
D0-D7

FIGURE 30.10 Block diagram for a selectable parallel port, using three 74367
ICs to independently control three separate devices.

PRINT "Pin 11: 0"
END IF
IF ((x AND 16) = 0) AND ((x AND 8) = 0) THEN

PRINT "Pin 12: 1"
ELSE

PRINT "Pin 12: 0"
END IF
IF ((x AND 32) = 32) AND (x AND 8) = 8 AND (x AND 16) = 16 THEN

PRINT "Pin 15: 1"
ELSE

IF ((x AND 32) = 0) AND (x AND 8) = 0 THEN
PRINT "Pin 15: 1"

ELSE
PRINT "Pin 15: 0"

END IF
END IF
PRINT "": PRINT ""
FOR Count = 1 TO 10000: NEXT Count
CLS

WEND

Before moving on, notice the use of the DIM keyword in the program shown in Listing
30.3. The DIM (for “dimension”) keyword tells Basic what kind of variables are used in
the program. While using DIM is not absolutely mandatory (in QBasic and later), you’ll
find that adopting it in your programs will not only help reduce errors and bugs. Most of
all, it will make your programs run much faster. Without the DIM keyword, the Basic inter-
preter creates an all-purpose “variant” variable type that can hold numbers of different
sizes, as well as strings. Every use of the variable requires Basic to rethink the best way to
store the variable contents, and this takes time.

A Practical Application of the Parallel
Port Input Lines
You can use the status bits for the robot’s various sensors, like whiskers, line-tracing detec-
tors, heat and flame detectors, and so forth. The simple on/off nature of these sensors
makes them ideal for use with the parallel port. Listing 30.4 shows a simple demonstrator
program that turns two drive motors forward until either switch located on the front of the
robot is activated. Upon activation of either switch, the robot will back up for one second,
spin on its axis for two seconds, then go forward again.

The demonstrator program is an amalgam of techniques discussed previously in this
chapter. The program assumes you have a two-wheel robot of the type described earlier in
the chapter, with the motors controlled according to the definitions in Table 30.8. Whisker
or bumper switches are attached to pins 10 and 11.

LISTING 30.4.

DECLARE SUB GetAway ()
DIM BaseAddress AS INTEGER, StatusPort AS INTEGER
DIM SHARED DataPort AS INTEGER

478 COMPUTER CONTROL VIA PC PRINTER PORT

DIM ControlPort AS INTEGER
DIM x AS INTEGER, Count AS INTEGER

BaseAddress = 888
DataPort = BaseAddress
StatusPort = BaseAddress + 1
ControlPort = BaseAddress + 2

CLS
PRINT "Press Ctrl+Break to end program..."

WHILE (1)
OUT DataPort, 3 ' drive forward
x = INP(StatusPort) + 1 ' read sensors
IF (x AND 64) = 64 THEN ' if sensor 1 active

GetAway
END IF
IF (x AND 128) <> 128 THEN ' if sensor 2 active

GetAway
END IF
FOR Count = 1 TO 500: NEXT Count

WEND

A PRACTICAL APPLICATION OF THE PARALLEL PORT INPUT 479

OUT
10

1

2

3

4

5

6

7

8

10

11

12

9

13

14

15

0
7

6

5

4

3

2

1

23

22

21

20

19

18

17

16

8

9
ENABLE

15

+5vdc

Output

14

13

A

B

C

GND

74150
Inputs

24

11D

FIGURE 30.11 Basic wiring diagram for the 74150 multiplexer chip.

SUB GetAway
OUT DataPort, 15 ' back up
SLEEP 1 ' wait one second
OUT DataPort, 7 ' hard left turn
SLEEP 2 ' wait two seconds
END SUB

Expanding the Number of Inputs
Normally, you can have up to five sensors attached to the parallel port (though many ports
only support three or four inputs, depending on their specific design). However, by using
the ENABLE pins of the buffers in the 74367 chips, it is possible to select the input from
a wide number of sensors. For example, using just four control lines with a 74150 data
selector means you can route up to 16 sensors to the parallel port. See Fig. 30.11, above,
for a pinout diagram of the 74150.

From Here
To learn more about… Read
Computers and microcontrollers for robots Chapter 28, “An Overview of Robot

‘Brains’”
Connecting computers and microcontrollers Chapter 29, “Interfacing with Computers
to “real-world” devices such as motors and sensors and Microcontrollers”
Using remote control to activate your robot Chapter 34, “Remote Control Systems”
Using sensors to aid in robot navigation Part 6, “Sensors and Navigation”

480 COMPUTER CONTROL VIA PC PRINTER PORT

