
The LEGO Mindstorms Robotic Invention System has become a watershed for hobby
robotics. The Mindstorms set allows both child and adult alike to experiment with robot-
ics, without the usual requirements of constructing a frame and body or soldering elec-
tronic circuits. As such, Mindstorms provides a quick and simple introduction to robotics,
and especially the programming behind it.

Yet the robots you can build with the Mindstorms go far beyond simple automated toys.
There is a surprising amount of power under the yellow plastic of the Mindstorms robot
module (the RCX). Much of this power is either not easily recognizable in the standard
programming environment that comes on the Mindstorms CD-ROM or is not available, for
whatever technical reasons.

Fortunately, you can tap the full potential of the Mindstorms robotics system by using
alternative programming environments. This chapter discusses two popular alternative
environments, including one that works with Microsoft Visual Basic.

Using Visual Basic to Program the RCX
Microsoft Visual Basic provides a convenient method for programming the LEGO
Mindstorms RCX. You don’t even need the full Visual Basic package (some $250 or more
retail). You can also use any program that supports Visual Basic for Applications—such as
Microsoft Word 97 or Corel WordPerfect 9 or later versions.

14
PROGRAMMING THE LEGO

MINDSTORMS RCX

Advanced Methods

173

From Robot Builder’s Bonanza, 2nd Edition. See www.robotoid.com for more. © 2001

The text that follows will work equally well when using Visual Basic 5.0 or later or
Visual Basic for Applications. However, some menu commands may be different between
the two products as well as between different versions. For the sake of brevity, from here
on we’ll refer to Visual Basic as “VB” and Visual Basic for Applications as “VBA.”

Note: by necessity, this chapter does not discuss programming with VB or VBA. It is
assumed that you are already familiar with at least the basics of VB or VBA and that you know
how to create and work with user forms and code modules. If VB and/or VBA are new to you,
pick up a good introductory book on the subject at your library or neighborhood bookstore.

Before attempting to program in VB/VBA visit the main LEGO Mindstorms Web page
(www.mindstorms.com) and look for the Software Developer’s Kit page. Download the infor-
mational document on the “PBrick” programming syntax for the spirit.ocx ActiveX control.
As of this writing, the document is available only in Adobe Acrobat format, so you will need
a copy of the Adobe Acrobat reader to view the file. The Acrobat reader is available free at
www.adobe.com and many other places; see the link on the LEGO Mindstorms page to down-
load this software. You may also wish to download the sample VB program for later review.

When you use RCX with Visual Basic, you program the RCX by using a “middleware”
component. This component is spirit.ocx, a Windows file that serves as an interface
between the programming environment (VB or VBA) and the RCX itself. Spirit.ocx comes
with the LEGO Mindstorms installation CD and is placed on your computer when you
install the software. Keep this in mind: you will not be able to perform any programming
until the Mindstorms software has been loaded. If you haven’t done so already, use the
standard Mindstorms programmer software to run the RCX through a couple of its basic
paces. Once you know the RCX works with the standard programmer software you’re
ready to forge ahead with VB!

RUNNING THE TEST PROGRAM

To begin, start Visual Basic in the usual way. If you are using VBA, start the Visual Basic
Editor (for example, in Word 97 and later you would choose Tools, Macro, Visual Basic
Editor). Once you are in the Editor, follow these steps:

1. Create a new form by choosing Insert, UserForm.
2. Add the spirit.ocx component by choosing Tools, Additional Controls. Locate the “Spirit

Control” and click on it to add a checkmark beside it. Choose OK to close
the Additional Controls dialog box. (Note: this step need only be done once; thereafter the
spirit.ocx control will be registered with VB/VBA for use in other projects.)

3. A new LEGO icon should appear in the Toolbox (choose View, Toolbox, if the Toolbox
is not visible).

4. Click on the LEGO icon (this is the Spirit Control) and drag anywhere over the user
form you created in step 1.

5. For ease of use, make the LEGO icon about a quarter-inch square and place it in the
lower-right corner, as shown in Fig. 14.1.

6. Verify the proper settings of the Spirit Control by clicking on it and examining its properties
in the Properties box. Specifically, check that the serial communications port is set properly
(usually either COM1 or COM2), that the LinkType is Infrared (assuming you’re using the stan-
dard infrared tower that comes with the Mindstorms set), and that the PBrick type is RCX.

174 PROGRAMMING THE LEGO MINDSTORMS RCX

7. Change the name of the Spirit Control you’ve added to PBrickCtrl. (This step is optional;
however, it conveniently conforms to the examples provided in the PBrick documenta-
tion provided by LEGO.)

8. Click on any blank area of the form, and change the name of the form (in the Properties
box) to RCXFrm. While you can choose any name for the form, the sample programs that
follow later in this chapter use the name RCXFrm to reference the PBrickCtrl control.

Adding the Spirit Control (spirit.ocx) component to the form allows you to write VB
code so as to interface with the RCX. You are now ready to begin programming:

1. Create a new code module by choosing Insert, Module.
2. Type the BasicTest code shown below. Be on the lookout for typographical errors.

Sub BasicTest()
RCXFrm.PBrickCtrl.InitComm
RCXFrm.PBrickCtrl.PlaySystemSound (2)
End Sub

3. Verify that your RCX is on and that it is positioned no more than about a foot from the
infrared tower.

4. In VB/VBA, run the BasicText program (choose Run, Run Sub, or press F5). (Note: you
do not need to depress the Run button on the RCX in order to execute the BasicTest code.)

If all is working properly, the RCX should emit a short tone. If you get an error or
the tone doesn’t sound, recheck that the RCX is operating properly. Verify that the IR
tower is functioning by verifying that the dim green light is on when the BasicTest pro-
gram is being downloaded. This light will extinguish a few seconds after downloading
is complete.

PROGRAMMING MOTOR ACTIONS

Sounding tones is hardly the life’s work of the LEGO RCX unit, so let’s try some more
advanced programming techniques, including running two motors. For the following test, we’ll
assume that your RCX robot has two motors, attached to outputs A and C. Type the following

USING VISUAL BASIC TO PROGRAM THE RCX 175

FIGURE 14.1 The test form in
Visual Basic, with
the spirit.ocx con-
trol added.

code, either in the same module in which you created BasicTest earlier or in a new module.
Again, be watchful for typographical errors. We’ll discuss what the code does in a bit.

Listing 14.1 Testmotors
Option Explicit

Public Const SWEEP_DOWN_SOUND = 2
Public Const SWEEP_UP_SOUND = 3
Public Const SWEEP_FAST_SOUND = 5

Sub TestMotors()
With RCXFrm.PBrickCtrl
.InitComm
.SelectPrgm 0
.BeginOfTask 0
.Wait 2, 30
.SetPower "02", 2, 7
.SetFwd "02"
.On "02"
.Wait 2, 50
.SetRwd "02"
.Wait 2, 50
.Off "02"
.PlaySystemSound SWEEP_FAST_SOUND
.EndOfTask
End With
MsgBox "Download complete"
End Sub

Running the TestMotors program When you are done typing, run the TestMotors
program in VB/VBA. A message box appears when downloading is complete. For this test,
you must select program 1 on the RCX, using the Pgm button. Press Run when you’re
ready to run the program. The RCX should spin its motors forward and reverse for a short
burst each way. When done, the RCX will emit its “up-sweep” tone to tell you it’s finished.

Examining the TestMotors program The TestMotors program is actually straight-
forward. You may want to increase your understanding of what the program does by
reviewing the PBrick documentation (described earlier in this chapter) from LEGO. Here
is the first line of the program:

With RCXFrm.PBrickCtrl

The With statement is a standard VB/VBA command. It allows you to reference an
object—in this case, RCXFrm.PBrickCtrl—using a shorthand syntax. Refer to the
VB/VBA documentation for additional information on using With. All of the statements
that follow, except for MsgBox, are commands built into the spirit.ocx component:

.InitComm

.InitComm (note the period prefix) sets up communications between the IR tower and the
RCX. You must always include this statement before sending other commands to the RCX.

.SelectPrgm 0

.BeginOfTask 0

176 PROGRAMMING THE LEGO MINDSTORMS RCX

The .SelectPrgm 0 statement selects program 1 in the RCX (e.g., press the Pgm button
until program 1 appears in the RCX’s LCD display). Much of the programming with spir-
it.ocx involves zero-based values, so SelectPrgm 0 is program 1, SelectPrgm 1 is program
2, and so forth. Recall that you can store up to five programs in the RCX at any one time.

As a point of reference, the 0 after the .SelectPrgm statement is known as a parameter.
Many of the statements used to program the RCX with the spirit.ocx component require
that you use of one or more parameters.

The .BeginOfTask 0 statement tells the RCX that the code that follows is its main task.
This functionality will occur when you press the Run button on the RCX. Each program
can have up to 10 tasks. The RCX is designed to run each task simultaneously, which
allows your programs to be multithreaded. For example, you might have your RCX play a
tune while driving a zigzag course. Each of these actions is contained in its own task in one
program.

.Wait 2, 30

The .Wait statement tells the RCX to wait a brief period of time. Wait uses two para-
meters: the 2 tells the RCX that the parameter that follows is a literal “constant”. The 30
indicates 30/100s of a second, or about a third of a second. Other Wait statements in the
remainder of the program perform a similar function.

.SetPower "02", 2, 7

.SetFwd "02"

.On "02"

These three statements set up the drive motors and turn them on. .SetPower sets the
power to motors 0 and 2 (labeled A and C on the RCX) to full. The 2 indicates a literal
constant, and the 7 indicates the value (1 is slow, 7 is fast, and there are several speeds
in between). Similarly, .SetFwd sets the direction of motors 0 and 2, and .On turns
them on.

.SetRwd "02"

Similar to .SetFwd, .SetRwd sets the direction of motors 0 and 2 in reverse.

.Off "02"

.PlaySystemSound SWEEP_FAST_SOUND

The .Off statement turns motors 0 and 2 off. The .PlaySystemSound statement, previ-
ously used in the BasicTest program earlier in this chapter, sounds a tone. Note the use of
the SWEEP_FAST_SOUND constant variable, which is defined at the top of the program
(a constant is a variable whose value does not change throughout the execution of the pro-
gram). You can—and should—get into the habit of using constants instead of literal numer-
ic values. It’s a lot easier to see what PlaySystemSound(SWEEP_FAST_SOUND) means
than PlaySystemSound(5), though both do exactly the same thing.

Consult the documentation for VB/VBA if you’re new to the concept of using constants.

.EndOfTask

USING VISUAL BASIC TO PROGRAM THE RCX 177

The .EndOfTask statement tells the RCX that the task begun earlier is now complete.

CLOSING THE COMMUNICATIONS PORT

In the program examples given in the previous section, the communications port, such as
COM1 or COM2, is opened so the spirit.ocx component can send signals out of the
Mindstorm’s IR tower. This is done with the .InitComm statement. In each of the program
examples we just examined, the communications port is left open. This is to simplify down-
load timing, but in general it’s not an advisable practice because it leaves the communications
port opened, and therefore locked against use by other programs on your computer.

Use the .CloseComm statement to close the communications port. You can integrate this
statement with your programs—for example, as the last command sent to the RCX.
However, you must be careful not to close the communications port before downloading is
complete or else your program will not function properly. One way to get around this is to
use a waiting loop in VB; another is to use the DownloadDone event, which is a signal sent
by the RCX when it has received all of its programming. The PBrick documentation from
LEGO explains how to use the DownloadDone event.

Yet another approach is to specifically run a small program that closes the communica-
tions port. Here’s all the code you really need for the job:

Sub CloseComm()
RCXFrm.PBrickCtrl.CloseComm
End Sub

GOING FURTHER

There are many more things you can do with the spirit.ocx component and VB/VBA,
including reading sensor values (this is done with the Poll statement), adjusting the power
output of the IR tower, even turning the RCX off remotely. Sadly, we don’t have the room
to delve into these subjects in more detail.

Fortunately, you can turn to the PBrick documentation provided by LEGO on the
Mindstorms Web site (www.mindstorms.com) for additional information. Be sure to also
check out the additional examples and resources on RCX programming at the support site
for this book, www.robotoid.com.

Using Not Quite C (NQC) to Program
the RCX
At last count, there were over a dozen programming alternatives for the LEGO Mindstorms
RCX. One of the first, and still one of the most popular, is NQC—the letters stand for “Not
Quite C.” NQC is a stand-alone, text-based programming environment for the RCX. It is
capable of performing the same basic programming functions as the Visual Basic
approach, described earlier, but the programming language is radically different.

NQC is a freely distributed program available at http://www.enteract.com/~dbaum/nqc/.
Versions of NQC are available for Windows-based systems, as well as the Apple Macintosh

178 PROGRAMMING THE LEGO MINDSTORMS RCX

and Linux. Fetch the version you want, and place the NQC files in their own directory on
your computer’s hard disk drive. Assuming the IR tower is properly connected to your
computer and the Mindstorms software has been previously installed, you’re ready to go!

Note that the following steps assume you’re using a Windows-based PC. Consult the
documentation that comes with NQC if you are using a different computer.

CREATING A NQC PROGRAM

As its name suggests, Not Quite C uses a C-language syntax for programming. For those
unfamiliar with C, the syntax can look daunting. However, with just a little bit of study,
you’ll find NQC is not difficult to use. If anything, it’s often easier to interact with the
RCX using NQC than with Visual Basic.

You may use any text editor to prepare an NQC file. In Windows, for example, you
can use the Notepad program. You should store your NQC program files in the same
directory as the nqc.exe program itself. Listing 14.2 shows a simple NQC program that
does an amazing amount of computational work. Run this program on an RCX with two
motors attached to the A and C outputs and with a light sensor connected to Input 1 and
pointing forward. When you do, the RCX will seek out any bright light in the room.
Aim a flashlight at the light sensor, for example, and the robot will come toward
the light.

Figure 14.2 shows the prototypical RCX “rover” robot, set up for the sample programs
in this section.

Listing 14.2 photophile.nqc.
#define LIGHT SENSOR_1
#define MOTOR OUT_A+OUT_C

task main()
{

SetPower(MOTOR, 7);
SetDirection (MOTOR, OUT_REV);
SetSensorType(LIGHT, SENSOR_TYPE_LIGHT);
while(true) {

if(LIGHT > 60)
On(MOTOR);

else
Off(MOTOR);

}
}

If you key in this program in order to try it out, name it photophile.nqc (photophile means
“lover of light”). Be on guard for typographical errors, and do not omit any of the brace char-
acters! As with most C-based languages, capitalization is important. For example, while is cor-
rect, but not While.

EXAMINING THE NCQ PROGRAM

Let’s take a closer look at this program. The first two lines:

#define LIGHT SENSOR_1
#define MOTOR OUT_A+OUT_C

USING NOT QUITE C (NQC) TO PROGRAM THE RCX 179

These two statements define constants (unchanging variables) used elsewhere in the
program. Constants are defined by using the #define keyword followed by the name of
the constant and finally by the value of that constant. Note that the value of the constants
LIGHT and MOTOR are themselves constants! In this case, the constants SENSOR_1,
OUT_A, and OUT_B are built-in constants, with values already defined by NQC. We use
our own constants to make working with the RCX even easier. See Table 14.1 for a list of
the most commonly used built-in constants.

You will note that the MOTOR constant refers to two outputs, both A and C
(OUT_A OUT_C). This allows us to operate both motors together, which will make it a
little easier to command the robot to go forward or backward. The next two lines of the
program are:

task main()
{

Each NQC program can have up to 10 tasks. Each task can be run simultaneously. The
task that is run when you press the Run button on the RCX is called main. You can create
your own names for other tasks you add in your program, but main always refers to the,
well, “main” task that the RCX automatically runs.

Note the open brace (the “{” character) that follows the task main() statement. In NQC,
as in C, multiple program statements are defined in blocks or compound statements. For

180 PROGRAMMING THE LEGO MINDSTORMS RCX

FIGURE 14.2 The basic “rover” robot to be used with the programs in this chapter.

TABLE 14.1 NQC STANDARD CONSTANTS

CONSTANT NAME FUNCTION EQUIVALENT VALUE

SetSensor

SENSOR_1 Input 1 0

SENSOR_2 Input 2 1

SENSOR_3 Input 3 2

SetSensorMode

SENSOR_MODE_RAW Raw value from sensor hex 0x00
(0 to 1023)

SENSOR_MODE_BOOL Return Boolean (0 or 1) value hex 0x20

SENSOR_MODE_EDGE Count number of rising/ hex 0x40
falling edges

SENSOR_MODE_PULSE Count number of pulses hex 0x60

SENSOR_MODE_PERCENT Show value as percentage hex 0x80

SENSOR_MODE_CELSIUS Temperature sensor Celsius hex 0xa0
reading

SENSOR_MODE_FAHRENHEIT Temperature sensor Fahrenheit hex 0xc0
reading

SENSOR_MODE_ROTATION Rotation encoder hex 0xe0

SENSOR_TYPE_TOUCH Pushbutton switch 1

SENSOR_TYPE_TEMPERATURE Temperature sensor 2

SENSOR_TYPE_LIGHT Powered light detector 3

SENSOR_TYPE_ROTATION Rotation encoder 4

Outputs

OUT_A Select motor A 1 << 0

OUT_B Select motor B 1 << 1

OUT_C Select motor C 1 << 2

Output modes

OUT_FLOAT Let motors coast 0

OUT_OFF Stop motors hex 0x40

OUT_ON Run motors hex 0x80

Output directions

OUT_REV Motors in reverse 0

OUT_TOGGLE Motors change direction 0x40

OUT_FWD Motors forward 0x80

each { character there must always be a } character, indicating the end of the block. You
will use blocks in if, while, and other statements. The one thing you need to remember
about blocks and the brace characters that define them, is this: always make sure you have
a close brace for every open brace. The next two lines of the program are as follows:

SetPower(MOTOR, 7);
SetDirection (MOTOR, OUT_REV);

The SetPower statement sets the power to the motors. The 7 means full power; use 1 for
low power or other values in between. SetDirection sets the direction of the outputs, in this
case reverse. This will make the robot move toward the light.

SetSensorType(LIGHT, SENSOR_TYPE_LIGHT);

A single light sensor, connected to input 1, is used for the robot. The SetSensorType
statement sets the input—specified here as LIGHT—to accept a powered light.

while(true) {
if(LIGHT > 60)

On(MOTOR);
else

Off(MOTOR);
}

The main body of the program is a while loop, which thanks to the true expression repeats
the program until you depress the Run button on the RCX a second time or turn the RCX off.
The important part of the program is the if statement, which reads (in “human” terms):

182 PROGRAMMING THE LEGO MINDSTORMS RCX

TABLE 14.1 NQC STANDARD CONSTANTS (Continued)

CONSTANT NAME FUNCTION EQUIVALENT VALUE

Output power levels

OUT_LOW Motors at low speed 0

OUT_HALF Motors at medium speed 3

OUT_FULL Motors at full speed 7

Sounds for PlaySound

SOUND_CLICK Short beep 0

SOUND_DOUBLE_BEEP Two beeps 1

SOUND_DOWN Tone scale down 2

SOUND_UP Tone scale up 3

SOUND_LOW_BEEP “Error” beep 4

“if the output of the light sensor is greater than 60, turn the motors on;

otherwise

turn the motors off”

Light sensors on the RCX return a value of 0 to 100, with 0 being absolute darkness
and 100 being fairly bright light. The value of 60 was selected as a kind of threshold. If
you operate the RCX in dim room light, pointing a flashlight at the sensor will cause the
motors to run. Turning the flashlight off will cause the motors to stop.

DOWNLOADING THE NQC PROGRAM

Now that the program has been written (and saved), you can download it to the RCX by
using the main nqc.exe program. This program does two things: it compiles your text pro-
grams into a form that is suitable for the RCX, and it transfers the code to the RCX via the
Mindstorms’ IR tower.

NQC is a command-line program. To use it, open a new MS-DOS window by choosing
Start, Programs, MS-DOS Prompt. (Note: if you don’t have this option, choose Start, select
Run, type command.com, and then press OK.) If necessary, switch to the NQC program
directory using the CD (change directory) command, such as:

cd \nqc

This assumes that nqc.exe and your programs are in a directory named NQC. Then com-
pile and download your program with the following command:

nqc -d program.nqc

where program.nqc is the actual program name you want to use. If you saved the sample
program as photophile.nqc, for example, type the following:

nqc -d photophile.nqc

and press the Enter key. NQC will then compile the program and download it to the
RCX. If there are syntax errors in your program, NQC will alert you of them and dis-
play the approximate line where the error occurs (usually the actual error is a line or
two above). Assuming the program compiles correctly, NQC displays “Downloading
program…” and then finally “Complete” when downloading is finished. Run the down-
loaded program by pressing the Run button on the RCX.

Note: Unless you tell it otherwise, NQC assumes that the IR tower is connected to
COM1 of your computer. Use the set command in DOS to set a different communica-
tions port, such as:

set RCX_PORT=COM2

USING NOT QUITE C (NQC) TO PROGRAM THE RCX 183

This tells NQC to use COM2 instead. Valid values are COM1, COM2, COM3, and COM4.
If you type one of these in the DOS window you have opened for NQC, the value will
remain only until you close the window. If you want to make the setting permanent, edit
the autoexec.bat file (it’s in the root of the C drive) and add the set command there. It will
take effect the next time you start your computer.

ALTERING THE BEHAVIOR OF THE ROBOT

It’s easy to alter the behavior of your NQC-controlled robot creations. One small change
you can make is to have the motors turn the other way when the light shines on the sensor.
This has the effect of creating a “photophobic” robot—a robot that appears to run away
from the light. The complete code example is shown in Listing 14.3. If you retype this pro-
gram, name it photophobe.nqc.

Listing 14.3 photophobe.nqc.
#define LIGHT SENSOR_1
#define MOTOR OUT_A+OUT_C

task main()
{

SetPower(MOTOR, 7);
SetDirection (MOTOR,OUT_FWD);
SetSensorType(BUTTON, SENSOR_TYPE_LIGHT);
while(true) {

if(LIGHT > 60)
On(MOTOR);

else
Off(MOTOR);

}
}

CREATING A MULTITASKING CONTROL PROGRAM

One of the most important capabilities of the RCX is that it is a multitasking device. You
can run up to 10 tasks “simultaneously” in one program. The microcontroller in the RCX
divvies up a little bit of its processing time to each task, so in human terms things appear
to happen simultaneously. Of course, in microcontroller terms it’s handling one instruction
at a time, but at very fast speeds.

The following program is a rudimentary but fully functional example of an RCX pro-
gram with multiple concurrent tasks. The program is based on the photophobe.ncq exam-
ple in the previous section. We have added separate tasks, one to play a little song (the first
notes of something that sounds like “Mary Had a Little Lamb”) and another to reverse the
motors and spin if a touch sensor is activated.

When the program is run, the robot exhibits three events (sometimes called “behaviors”
in modern robot artificial intelligence efforts):

Event 1. A song is played every few seconds. This event is free running, and no other
event in the program affects it.

Event 2. When a strong enough light strikes the light sensor, the robot backs away
from the light source (of course, “backs away” depends on how the motors and light sen-

184 PROGRAMMING THE LEGO MINDSTORMS RCX

sor are mounted on the RCX, but you get the idea). The motors will continue to run as
long as enough light strikes the sensor.

Event 3. When the touch sensor—mounted on the side of the RCX opposite the light
sensor—is activated, Event 2 is suspended (“subsumed”). The robot reverses direction
for a brief moment, then spins on its axis. Finally, it stops moving, and it is more than
likely no longer facing in the same direction. At this time, Event 2 is reactivated so that
the robot will “run away” from any light that shines into the light sensor.

See Listing 14.4 (let’s call it multitask.ncq), which contains short comments that are
indicated by the double slash (“//”) characters. These comments serve to describe the main
functionality of the program.

Listing 14.4 multitask.ncq.
// Constants definitions
#define LIGHT SENSOR_1
#define SWITCH SENSOR_2
#define MOTOR OUT_A+OUT_C

// Main task; run when Run button is pressed on RCX
// starts all tasks
task main()
{

start play_song;
start run_from_light;
start timed_backup;

}

// Task for running away from the light (same as photophobe.ncq,
// except that motors run a little slower)
task run_from_light()
{

while (true) {
SetPower(MOTOR, 3);
SetDirection (MOTOR, OUT_FWD);
SetSensorType(LIGHT, SENSOR_TYPE_LIGHT);
if(LIGHT > 60)

On(MOTOR);
else

Off(MOTOR);
}

}

// Task for backing up and spinning in response to switch touch
task timed_backup()
{

while (true) {
SetPower(MOTOR, 3);
SetSensor(SWITCH, SENSOR_TOUCH);
if (SWITCH == 1) {

stop run_from_light; // disallow run_from_light task
SetDirection (MOTOR, OUT_REV);
On(MOTOR);
Wait (50);
SetDirection (OUT_A, OUT_FWD);
Wait (150);
SetDirection (MOTOR, OUT_FWD);
Off(MOTOR);
start run_from_light; // allow run_from_light task

USING NOT QUITE C (NQC) TO PROGRAM THE RCX 185

}
}

}

// Task for playing a little tune
task play_song()
{

while (true) {
PlayTone(392,25);
PlayTone(349,25);
PlayTone(330,25);
PlayTone(349,25);
PlayTone(392,25);
PlayTone(0,2);
PlayTone(392,25);
PlayTone(0,2);
PlayTone(392,25);
PlayTone(0,2);
Wait (500);

}
}

Feel free to experiment with the code for multitask.ncq. The only real caveat is that if
you want a task to continue it should have its own loop. The While statement is one method
for doing this, but NQC provides other looping statements you may wish to try. Also,
remember that the RCX supports up to 10 tasks.

GOING FURTHER

Of course, there’s far more to Not Quite C than we have discussed here. The NQC down-
load includes complete documentation on its capabilities. For example, NQC supports a
wide variety of programming statements, loops, variable assignments, conditional expres-
sions, and more. With NQC you can develop highly sophisticated programs for the RCX
robot, and with a surprisingly small amount of code. Look for additional NQC samples and
resources at the support site for this book, www.robotoid.com.

From Here
To learn more about… Read
Introduction to programming concepts Chapter 7, “Programming Concepts—The

Fundamentals”
Using LEGO parts to create Chapter 12, “Build Custom LEGO-based Robots”
custom robots
Using the LEGO Mindstorms Chapter 13, “Creating Functionoids with the LEGO
Robotics Invention System Mindstorms Robotics Invention System”
Computer control of robots Part 5, Chapters. 28–34

186 PROGRAMMING THE LEGO MINDSTORMS RCX

